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1. What is WRF-Var?

…WRF-Var is a unified variational data assimilation system built
within the software framework of the Weather Research and
Forecasting (WRF) model, used for application in both research
and operational environments….



•Regional (worldwide applicability) / global.

•Run-time configurable 3/4D-Var.

•Single code (WRF-Var) for development,
release. Supported by NCAR/MMM.

•Embedded within WRF framework.

•Multi-model: WRF/MM5/KMA/NFS/…

AFWA 15km S-W Asia:

KMA T213 Global:

What Do We Mean By “Unified”



   Late 1999: Begin development of MM5
     3D-Var.

   June 2001: MM5-3DVar adopted as starting
     point for WRF 3D-Var.

   May 2002: MM5/WRF 3D-Var operational
     at Taiwanese CAA.

   September 2002: MM5/WRF 3D-Var
     operational in 45km domains at AFWA.

   June 2003: WRF 3D-Var V1.0 release.

   May 2004: WRF 3D-Var V2.0  release.

   June 2005: WRF-Var V2.1 release.

WRF Variational Data Assimilation (WRF-Var) History

3D-Var
OI



WRF-Var Operational Applications: June 2005
AFWA 15km (e.g. S-W Asia): Indian NCMRWF 30km: Korean 10km:

AMPS 30km: Taiwanese CAA 135/45/15km: Korean T213/T426:



2. The WRF-Var Algorithm



Data Assimilation Overview
 Variational analysis xa is minimum x of cost-function J = -ln (P(x))

 Assume error probability P(x) is Gaussian then

 xb is the background. H is the (possibly nonlinear) observation operator.

 Error covariances:

       = Background (previous forecast) error covariance matrix.
       = Observation error covariance matrix (includes instrumental and    
representiveness error).

 Practical implementation requires numerous assumptions and approximations.
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 Define analysis increments: xa = xb + I x’

 Solve incremental cost function (with uncorrelated obs. errors):

where y’ = Hx’,

 Define preconditioned control variable v space transform x’=Uv
where U transform CAREFULLY chosen to satisfy Pf = UUT .

 Choose (at least assume) control variable components with
uncorrelated errors:

Incremental WRF-Var and Preconditioning
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 Reads in observation files from decoders/GTS.

 Performs gross QC, e.g. domain/time,
consistency, duplicate, merging.

 Simple thinning option.

 Outputs in text “3D-Var format” for further
QC and assimilation in WRF-Var.

 Assign observation errors.

 Plots observation distributions.

 Note: Work under way to convert to BUFR,
rather than text files.

Observation Preprocessing (3DVAR_OBSPROC)

Example thinned AIRS distribution

00 UTC 15th May 2004 (+/-2hrs):
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 Assume background error covariance estimated by model perturbations x’ :

Two ways of defining x’ in utility gen_be:

 The NMC-method (Parrish and Derber 1992):

where e.g. t2=24hr, t1=12hr forecasts…

 …or ensemble perturbations:

 Tuning via innovation vector statistics (H&L86 ) and
variational methods (Desroziers & Ivanov 2001)
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CV Transform: x’=Uv

FTL Integration: x’(t)=Mx’(t0)

Observation Operator: y’=Hx’

Cost Function J = Jb(v) + Jo(y’)

Adjoint Observation Operator: x’adj=HTyadj

Adjoint FTL Integration: x’adj (t0) =MTx’adj(t)

Adjoint CV Transform vadj=UTxadj

Cost Function Gradient = Jb(v) + Jo(vadj )

M
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WRF-Var “Inner Loop”
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WRF-Var Control Variable Transform
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Global Regional MM5/UKMO
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from Wu et al (2002)

Define statistical balance
e.g.
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Stage2: Global model (KMA) data

Regression Coefficients after Wu et al (2002):
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Explained covariance due to balance constraints (Jan 2004
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WRF-Var: Analysis Increment of Single GPS TPW
Observation

The plot at left shows the
combined response of WRF-Var
to a single TPW observation O-
B=1mm located at Taipei.

Analysis Increment Isosurfaces:

Blue = q (1g/kg).

Yellow = T (1K).

Purple=Pressure(1hPa).

Red = Wind Circulation at k=5.

Black = Wind Circulation at k=25.



WRF-Var Minimization Example

Convergence obtained when gradient < 0.001starting gradient.

Here, CGM -> ~40% reduction in 3DVAR run-time.
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QNM: Quasi-Newton Method.

CGM: Conjugate Gradient Method.
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WRF 4DVAR project

Schedule
• FY04: prepare. (wrf model, simplified model, testing TAF on

wrf subroutines.)

• FY05: construct. (4DVAR framework, basic (dry) wrf TL and
AD components, initial experiments.)

• FY06: refine. (more physics, parallel code, extensive testing.)

Supported by AFWA

The team: Dale, Hans, John, Qingnong, Wei Huang



3. Observations



WRF-VAR Observations Used (May 2005)
 Conventional:

- Surface (SYNOP, METAR, SHIP, BUOY).
- Upper air (TEMP, PIBAL, AIREP, ACARS).

 Remotely sensed retrievals:
- Atmospheric Motion Vectors (SATOBS, MODIS).
- Ground-based GPS TPW/ZTD.
- SSM/I oceanic surface wind speed and TPW.
- Scatterometer (Quikscat) oceanic surface winds.
- Wind Profiler.
- Radar radial velocity and reflectivity.
- ATOVS/AIRS/MODIS temperature/humidities (SATEMs).
- GPS “local” refractivity.

 Radiances:
- SSM/I brightness temperatures (Shu-hua Chen).
- AMSU/GOES/AIRS (under development).



First Guess at Appropriate Time (FGAT)
• Principle: Compare observations with first guess forecast valid at time of observation
• Results courtesy of Mi-Seon Lee (KMA visitor to NCAR).
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• Purpose: Can we assimilate radar radial velocity (and reflectivity) in
3D-Var to produce superior forecasts?

• Quality control/preprocessing crucial.

• Diagnose/analyze vertical velocity via “Richardson equation”

Combines thermodynamic, continuity and hydrostatic equations….

• Linearize continuous eqn., then discretize (assume Q=0 for now):

Radar Data Assimilation
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Obs (03Z, 31/08) No Radar

Radar RV Radar RV+RF

Typhoon Rusa Test Case 3hr Precip:
Korean Radar Data Assimilation in WRF 3D-Var
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Typhoon Dujuan GPS Refractivity Assimilation
(preliminary results from Yong-Run Guo NCAR/MMM)

WRF Domain Info:

• 222x128x31 gridpoints.

• Resolution=45km.

• dt=270 sec.

Observations:

• Conventional + CHAMP level2 wetPrf data within 6 hour time window
centered at 1200 UTC 30 and 1200 UTC 31 August 2003.



GPS Local Refractivity Observation Operator

The refractivity N is

where p is the pressure in mb, T in the temperature in K, and q is the specific
humidity in kg/kg (Zou et al 1995).
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• GPS local refractivity observation error based on Huang et al (2004)

where N_bottom = 10 and N_top = 3 N-units. p0 = 1000mb, pt = 10mb, and p is the
pressure at the observed level.

Future work: Refine the N error specification varying with the latitude, altitude, and
season, etc (Kuo et al 2004).

GPS Local Refractivity Observation Errors
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• Innovations (O-B) of GPS refractivity with NCEP analysis as the first
guess and the observation errors

• In most cases, the
innovations are less
than the observation
errors.

•The large (O-B)
values located below
8-km.



WRF 3D-Var experiments for Typhoon Dujuan

CNTRL : No assimilation, initiated with NCEP AVN analysis
3DREF : Assimilation of GPS Refractivity only
3DCWB : Assimilation of CWB observations (SOUND, AIREP, SYNOP. 

  SHIPS, PILOT, SATOB, SATEM, METAR).
3DCWBREF : Assimilation of CWB observations + GPS refractivity.

Physics:  WSM 3-class simple ice scheme,
RRTM for long wave radiation

 Dudhia scheme for short wave radiation, 
MOnin-Obukhov surface layer

Thermal diffusion land-surface
YSU PBL
Kain-Fritsch (new Eta) scheme

WRF-Var FirstGuess = NCEP Analysis.

Background Error Statistics = “Global” default values derived from NCEP GFS
forecasts and NMC-method.

Initial times are 1200 UTC 30 and 1200 UTC 31 August 2003.



Typhoon Dujuan Track Forecast Errors

_108.1105.6260.079.852.53DCWBREF

_104.9103.6259.189.358.53DCWB

_120..7115.1214.285.869.83DREF

_115.7110.2221.167.169.2CNTRL

72-
h(km)

48-
h(km)

24-
h(km)

72-
h(km)

48-
h(km)

24-h(km)

2003083112Z2003083012ZExperiment

This table shows the averaged track forecast errors for three 24-h periods ending at 24,
48, and 72 h. We have 3-hourly forecast positions for Typhoon Dujuan, so in each of 24-h
periods, there are 8 forecast positions. The values shown in Table are obtained by
averaging over eight 3-h errors. Except the 48-h initiated at 2003083012Z, the 3D-Var
experiments gave better results than control.

Dale: Statistical Significance? Need more cases, and cycling.

Also more sophisticated error specification, “nonlocal” operator.



4. Current Status and
Future Plans



WRF-Var Version 2.1 (Release June 2005)

• First Guess at Appropriate Time (FGAT).

• New obs: Radar reflectivity, GPS refractivity, AIRS/MODIS temperature
retrievals, MODIS atmospheric motion vectors.

• Global 3D-Var capability.

• New utility gen_be to calculate local background error statistics.

• Platforms: IBM-SP, DEC, Linux (Alpha, PC), SGI, Cray X1, Mac G4/G5.

• Initial WRF 4D-Var modifications.



MMM WRF Data Assimilation Plans

WRF-Var:

• Further development of radar, GPS refractivity assimilation.

• Initial 4D-Var capability for AFWA (October 2005).

• AMSU radiance assimilation (December 2005).

• Operational global application at KMA (June 2006).

• 4D-Var operational at AFWA (October 2007).

EnKF:

• Assimilation of reflectivity (particularly low reflectivity).

• Case-studies, particularly including mesoscale predictability.

• Further comparison of EnKF and variational schemes.

• Assimilation of hurricane position.

Unified WRF Data Assimilation System:

• Combines variational and ensemble-based techniques.

• Leverages satellite radiance expertise of JCSDA, universities.

• Suitable for MMM research, operations, and university

community use.


