
Paul A. Bernhardt, Carl L. Siefring
Plasma Physics Division

Naval Research Laboratory
Washington, DC 20375

Scott A. Budzein
Space Science Division

Naval Research Laboratory
Washington, DC 20375

FORMOSAT-3/COSMIC Science Summer Camp
Central Weather Bureau

Taipei, Taiwan
30 May - 3 June 2005

Naval Research Laboratory

The CERTO/TBB Instrument for Ionospheric
Tomography and Scintillation Region Imaging



Space Based Beacons and Receiver

• CERTO Beacon System Objectives
• CERTO Space-Based Transmitter
• CITRIS Space-Based Receiver
• Science Operations
• Satellites, Inclinations and Launch Dates
• Ground Receivers
• Conclusions



Radio Beacon Experiment Objectives
Program Goals
• Detect When and Where Radiowave Propagation Through the Ionosphere

Is Adversely Affected by Scintillation and Refraction
• Provide a Global Map of Ionospheric Densities and Irregularities to

Improve Current Models of the Ionosphere

Vertical TEC

 (1016 m-3)

NWRA SCINTMOD
Scintillation Predictions

NRL SAMI3
TEC Predictions



Coherent Electromagnetic Radio Tomography
(CERTO) Science

• Three Frequency Beacon Transmissions
– Frequencies: 150.012, 400.032, 1066.752 MHz
– Output: 1 – 2 Watts ERP with RHC Polarization
– No Modulation

• Total Electron Content
• Two Dimensional Ionospheric Imaging

– Radio Beacons in Low Earth Orbit
– Data from Vertical and Oblique Paths Through the Ionosphere
– Additional Data from GPS Occultations
– Reconstructions Using Computerized Ionospheric Tomography

• Scintillation Monitoring
– VHF, UHF, and L-Band radio Frequency Ranges
– Phase and Amplitude Fluctuations from Radio Source
– Regional Maps of Radio Signal Disruptions



New CERTO on CERTO
Tri-Band Beacon Block Diagram
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CERTO-D Beacon (w/Low-Pass Filters)

DC Power Supply           RF Synthesis            Power Amplifier 1        Power Amplifier 2



CERTO Beacon Antenna

Trapped Antenna Radiators

Boom

Reflectors

Nadir



CERTO Beacon Antenna

Optional
S-Band
Antenna

Optional
150 MHz
Reflector
Antenna

Stowed
Configuration



CERTO Antenna Deployment on
Formosat-3/COSMIC



Antenna Performance
VHF/UHF/L-Band Patterns
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sCintillation and Tomography Receiver
in Space (CITRIS) Summary

• CITRIS Receiver will Provide Global Ionospheric
Measurements
– Ground DORIS Beacons (401.25 and 2036.25 MHz)
– Simultaneous CERTO (150.012, 400.032, and

1067.752 MHz) and DORIS Measurements
– Occultation Measurements with CITRIS on STPSAT1

Receiving the CERTO Beacon on NPSAT1
• Status

– CITRIS Instrument Assembly Complete
– Testing Underway and Delivery in Early July 2005
– STPSAT1 Launch Scheduled Late 2006
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CITRIS Flight Receiver
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CERTO RADIO BEACON GEOMETRY
FOR TEC AND SCINTILLATION MEASUREMENTS

CERTO BEACON
TRANSMITTERS

 CITRIS RECEIVER

Low Earth
Orbits

N

S

 Ground
Receivers

Ground
Transmitters

Sub-Orbital
Trajectories



Two Frequency Differential
Phase Measurements of TEC

• Phase Path (Wavelengths)

• Two Frequency Differential Phase Removes Path Length

• Integer Derived Frequencies: fa = na f0, fb = nb f0, etc.

• Total Electron Content from 2 Frequency Differential Phase
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JOINT CERTO/TBB, GPS-GOX, TIP
OPERATIONS ON COSMIC

From GPS
Satellite

Ground Receivers

TIP EUV
Field of View



Limitations of GPS Occultation
for a Disturbed Ionosphere

• Abel Inversion Assumes Spherical Symmetry
• Horizontal Gradients are Averaged by Occultation
• Incompressible Transport Produces Ionospheric

Irregularities
• Occultation Data May Not Show Anomalies in

Ionospheric Structures
• Abel Inversions Yield Incorrect Results
• Additional Horizontal Structure Using TIP and TBB

Identifies Irregularities
• Adding TIP and TBB data to Occultation Measurements

Allows Reliable Imaging of Ionospheric Irregularities



Model Ionosphere for Satellite Occultation Studies
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Errors from GPS Occultation Data Using
Abel Inversions in the Disturbed Ionosphere
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Satellite to Ground TEC

-75 -50 -25 0 25 50 75

100

200

300

400

50050

40

30

20

10

0

S
la

nt
 T

E
C

 (1
01

2  c
m

-3
)

-75                  -50                 -25                  0                    25                  50                  75

Zenith Angle (Degrees)

Spherical Ionosphere

Ionosphere with Bubble



Quasi-Analytic Model of Total Electron
Content from Evolving Ionospheric Bubbles

• Prediction of CERTO Instrument Data
• Ionospheric Bubbles Rise Through the

Ionosphere
• Bubble Changes During Satellite Transit
• Tomographic Image May be Distorted
• Simulation with Equatorial Bubble Model
• Spatial and Temporal Variations



Layer Model
• Analytic Model for Background Ionosphere

– Modified Chapman Layer

– Parameters: Scale Heights and Layer Peak
• On Bottom H01 = 6 km
• On Top H02 = 50 km
• Transition H2 = 10 km
• HP = 400 km
• Ne0 = 106 cm-3
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Fast Rising Bubble Used for Simulated
Tomographic Data for Transmissions to

Six Ground Receivers (R1 to R6)
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TEC  for Stationary Bubble
Beacon Satellite at 600 km Altitude
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TEC Comparison
Rising Bubble Versus Stationary Bubble

VSat = 7.7 km/s at 600 km Altitude
VRise = 0.6 km/s at Bubble Center
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Tomographic Algorithm
Development and Testing

Ionospheric Reconstruction
– Synthetic Electron Density Data from

SAMI3 Model
– Derived TEC for Ground Receivers
– Reconstructed Electron Densities

Input TEC Data
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Ionosphere Model Densities



Scintillation
Prediction
for TBB

Operation
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CITRIS on
STPSAT1

CERTO/LP
on NPSAT1

RF Link

Scintillation and Ionospheric Tomography
Radio Instrument in Space (CITRIS):

Space Based Monitor of DORIS Ground Beacons or
Tandem Operations of NPSAT1 and STPSAT1

CERTO/CITRIS Operations
– Simultaneous VHF/UHF/L-Band
– Satellite to Satellite Links
– Up to Two Days Continuous Operation
– TEC Inputs to Space Weather Models
– Global Scintillation Monitor

RF Link

DORIS
Station in
Australia



Global Map of 56 DORIS Transmitters at 401 1/4 and 2036 1/4 MHz
CW Transmissions with 0.8 s Modulation Every 10 m.

Latitude Range: - 70o to + 80o

Data Records:   Absolute TEC (Differential Phase +Group Delay)
              UHF and L-Band Scintillations

DORIS UHF/S-Band Beacons at Ground Sites
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NRL CERTO Radio Beacons
and CITRIS Receiver
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CERTO Beacon Orbits
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COSMIC2

COSMIC5
COSMIC6

NPSAT1

STPSAT1

CASSIOPE

EQUARS



Advantages of CERTO Measurements on
Instrumented Satellites

• CERTO Beacon, GPS Occultation, EUV Photometer,
Langmuir Probe, etc. Together
– Additional Horizontal  and Vertical Path Data from GPS

and EUV Sensors
– Local Density from Langmuir Probe
– Independent Measurements of the Ionosphere
– Added Data for Computerized Ionospheric Tomography

• Unique Orbit Inclination
– NIMS Beacons in Polar Orbit at a Fixed Local Time
– CERTO Beacons in Wide Ranges of Latitudes and

Local Times



CERTO Beacons with Plasma Instrumentation
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CERTO DATA ACQUISITION
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Receiver Development for CERTO Beacons
• TBB Ground Receiver

– Operating Frequencies: 150/400/1067 MHz
– Amplitude and Phase Scintillations Plus TEC
– Primary Users

• Taiwan NSPO Receiver Chain in Asia
• India CRABEX Chain
• North and South America Chain
• European Chains in Scandinavia, United Kingdom, Spain
• South Africa Chain

• SCION-3 Receiver (Bob Livingston Design)
– Developed for AFRL SCINDA Network
– Design Complete and Prototype Tested
– Hybrid (Analog/Digital) Open Loop Tracking
– Deployment of 2 Receivers for C/NOFS Program by November 2004

• ITS30S Receiver (NWRA – Frank Smith)
– Hardware Design Complete and Software Development Almost Done
– Hybrid (Analog/Digital) Closed Loop Tracking
– Antenna Provided by NWRA with Small Contributions by NRL
– Three Frequency Model Operational by 1 October 2004

• CITRIS-G Receiver for COSMIC (Cornell Design)
– Receiver Design in Progress
– Open Loop Tracking
– Antenna from NRL
– Direct RF Sampling with Digital Tracking

• CIDR-3 Receiver (Applied Research Laboratory/University of Texas at Austin)
– Upgraded Two Frequency Receiver Design
– TEC/scintillations to 20/30 Hz
– Design Complete and Being Tested
– Quadrifilar Antenna or Crossed Dipole



Radio Beacon Receiver Chains
to Observe CERTO Beacons
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Scheduling of CERTO Operations with
Ground Receivers

• CERTO Radio Beacons are NOT Operating
Continuously

• Overflight of Ground Receivers
– Two or Three Frequencies Chosen from VHF/UHF/L-Band
– GPS Occultation Data if GPS Satellite in Proper Location
– Simultaneous Beacon and In Situ Probes with C/NOFS and

NPSAT1
• Supporting Ground Systems

– 50 MHz Radar: Jicamarca, Peru
– 430 MHz Radar: Arecibo, Puerto Rico
– All Sky Optical Imagers
– Digital Ionosondes

• Send Receiver Locations and Turn-On Requests to
Paul Bernhardt (bern@ppd.nrl.navy.mil)

• CERTO Beacon Satellite Updates Distributed Through
IITC from NWRA



Summary
• Ten or more CERTO beacon systems in low earth orbit will have

ability to determine the TEC and multi-band scintillations.
• The CERTO frequencies were chosen to optimize resistance to

noise, resolution of TEC ambiguities, and scintillation coverage.
• The resolution of the CERTO system is ~ 10-3 TEC Units

– Important to Track Small Ionospheric Fluctuations Such as Traveling
Ionospheric Disturbances (TID’s), Scintillation Instability Onsets, Wave
Refraction Effects, etc.

• The ambiguity of the 3 Frequency CERTO system
– 8.3 TEC units (48 π)
– Required to Determine Absolute TEC
– Improves Reliability of Tomography Processing
– Permits Restoration of Absolute TEC After Signal Drop Out
– Improved Resistance to TEC Receiver Noise

• CERTO beacons on C/NOFS, COSMIC, NPSAT1, CASSIOPE,
EQUARS etc. will complement each other for operations with
inclinations from 15 to 80 degrees providing wide range of spatial
and temporal sampling of the ionosphere.

• Ground receivers are needed.


