

The Tiny Ionospheric Photometer: Science Applications

Scott Budzien, Ken Dymond, Stefan Thonnard

(Naval Research Laboratory, Washington, DC) Ellen Bennert, and Clayton Coker (Praxis, Inc., Alexandria, VA)

- The TIP Sensor on FORMOSAT-3/COSMIC
- UV ionospheric remote sensing
- How TIP works
- TIP data products
- Using TIP data
- Summary

The TIP Sensor on COSMIC/FORMOSAT-3

- What is the Tiny Ionospheric Photometer?
 - Small, lightweight, "smart" sensor
 - Topside airglow sounder
 - High sensitivity
- What does the Tiny Ionospheric Photometer measure?
 - UV remote sensing
 - OI 135.6 nm airglow emission
 - Other FUV airglow, aurora features

- How are the Tiny Ionospheric Photometer measurements used?
 - Ionospheric gradients
 - Ionosphere/Thermosphere morphology
 - Simple VEC estimates
 - (vertical electron content)
 - GOX-TIP, TBB-TIP joint retrievals
 - Assimilative modeling
 - GAIM

Electronics Module

Sensor Module:

- Photomultiplier tube observes UV light
- SrF₂ filter passes 131-160 nm emissions
- Very high sensitivity ~150 counts/s/Rayleigh

Measures intensity of naturally occurring 135.6-nm airglow, caused by the decay of the nighttime ionosphere.

RMOSPHERIC & IONOSPHERIC RESEAR

Intensity is proportional to the vertical sum of the electron density-squared, $I \propto \int\!\! N_{\rm e}{}^2$

Nadir pointing 4° circular field-of-view yields 30-km horizontal resolution from an altitude of 700 km.

UV ionospheric remote sensing

- EUV—Extreme Ultraviolet
 - E>12eV
 - λ<100 nm
 - Ionizing radiation
 - Requires vacuum in laboratory; Reflective optics only; Open Detectors
 - Doesn't penetrate below ~200 km; Earth as laboratory
- FUV—Far Ultraviolet
 - -12eV > E > 6eV
 - λ<100 nm
 - Ionizes some Molecules; Dissociates Molecules
 - Requires vacuum in laboratory; Halide Filters; Windowed Detectors
 - Doesn't penetrate below ~100 km; Earth as laboratory
- MUV—Mid Ultraviolet (200-300 nm, UVC/UVB)
- NUV—Near Ultraviolet (300-400 nm, UVA)

• Ionosphere & thermosphere glow day & night

HERMOSPHERIC & IONOSPHERIC RESEARCH

- EUV/FUV radiation produced fundamental electronic transitions
- UV characterizes ionosphere
 - total brightness
 - altitude distribution
 - spectral distribution

Simply view it...

- Passive UV remote sensors

and interpret the glow

– Physics-based data analysis

to characterize the upper atmosphere

Measure gradients when signals are weal

- Required to produce data of a quality comparable to GPS occultation measurements

Simple – Low cost, low weight, low power - High sensitivity:

- COSMIC requires a simple, very high sensitivity instrument
- signatures
- Produces Light at 135.6 nm Atomic Oxygen
- Why only at night? ۲

Airglow

٠

- Daytime signals are contaminated by other

What does the TIP measure?

Measures the Intensity of Naturally Occurring

- Caused by Decay of Nighttime Ionosphere

Energy Deposition in the Upper Atmosphere

- (Above turbopause)
- Rapid temperature gradient indicates strong heating
- Extreme Ultraviolet (>12 eV)
 - Knock electrons free from atoms (generates Ionosphere)
 - Photoionization:
 - $O + EUV \rightarrow O^{+} + e^{-} + heat$ $O_{2} + EUV \rightarrow O_{2}^{+} + e^{-} + heat$ $N_{2} + EUV \rightarrow N_{2}^{+} + e^{-} + heat$
- Far Ultraviolet (6-12 eV)
 - Split molecules into atoms
 - Photodissociation: $O_2 + FUV \rightarrow O + O + heat$

Ionosphere Structure and Composition

HERMOSPHERIC & IONOSPHERIC RESEARCH

Ionosphere Variability

• Most Variable Component In The Atmosphere

HERMOSPHERIC & IONOSPHERIC RESEARCH

- Highest amplitude to solar (& other) forcing
- Varies with local time $\sim 10X$
- Varies with latitude $\sim 10X$
- Varies with season & solar cycle $\sim 10X$
- Spatial variations
 - Global, Regional, Local

- Solar radiation less intense in polar regions
- Earth's magnetic field directs solar wind particles to poles
- Auroral deposition
 - -Ionization, day & night
 - -Composition changes
 - -Powerful currents
 - -Major source of heating

TIP measurements

- TIP measures nighttime FUV emission of neutral atomic oxygen
- Radiative recombination: $O^++e^- \rightarrow O^+h\nu$
 - 135.6 nm produced by radiative recombination of O⁺ ions and electrons
 - O^+ and e^- densities equal in the F-region
 - 135.6 emission intensity proportional to electron density squared
 - Simple algorithm relates electron density to 135.6 nm intensity measured by TIP
- Aurora: $O+e^- \rightarrow O + e^- + h\nu$
 - 135.6 nm produced in aurora through electron impact excitation
 - TIP can determine auroral boundaries

(Radio)
$$TEC = \int n_e(s) ds$$

(Optical) Intensity $\approx \alpha \int n_e^2(s) ds$

where n_e is the electron density along the path s through the ionosphere and α is the radiative recombination rate

How TIP Works

What is the Tiny Ionospheric Photometer (TIP)?

- TIP is a Narrow Band Far-Ultraviolet Photometer
 - Operates in the 131.0-160.0 nm Passband
 - High Sensitivity ~ 150 ct s⁻¹ Rayleigh⁻¹ (design goal)
- Why Operate in the FUV?
 - There is no emission or light scattered from altitudes below ~100 km
 - No Earth's Surface Albedo to Worry About
 - No Terrestrial Sources to Consider
 - Strongest Nighttime Ionospheric Signature at 135.6 nm

Mission Operations Concept

THERMOSPHERIC & IONOSPHERIC RESEARCH

S/C sends 2 TIP command sequences during each orbit.

S/C Timed Command to TIP: NIGHTSIDE OPERATIONAL

Daily or weekly upload of two TIP command sequences (for nightside and dayside) to S/C computer

2 buffers of 80 bytes each are required //

Command sequence normally a default byte pattern day in, day out, except for

- on-orbit testing/troubleshooting
- possible observing campaigns
- adjusting for sensor degradation

S/C Timed Command to TIP: DAYSIDE STANDBY, CHOP, BAF2, or PINHOLE

TIP Filter Wheel and Operating Modes

- TIP Modes
 - Standby
 - Nightside Operational
 - Dayside BaF2
 - Dayside Pinhole
 - Dayside Chop

Testing: Calibration Summary

- TIP calibrated in NRL UV Calibration Facility
 - Measured short-wavelength cut-off of filter as a function of temperature
 - Measured relative sensitivity as a function of wavelength
 - Measured absolute sensitivity at 1470 Å
 - Preliminary reduction completed
- Preliminary reduction of absolute sensitivity data for TIP006 yields for 1470 Å
 - SrF₂ filter sensitivity: 235 counts/s/Rayleigh
 - Goal: >150 ct/s/Rayleigh
 - Exceeded our design goal
 - BaF₂ filter sensitivity: 6 counts/s/Rayleigh
 - Goal: 1-2 ct/s/Rayleigh
 - Sensitivity is acceptable
 - Pinhole: 12 counts/s/Rayleigh
 - Goal: 1-2 ct/s/Rayleigh
 - Sensitivity is acceptable
- Other units' sensitivity 190-390 counts/s/Rayleigh
 - Variation in PMT QE
 - Variability in pulse discriminator settings
- On-orbit validation will allow periodic calibration monitoring

TIP Data Products

TIP Products

- Level 0 Products
 - Nighttime Count Rate SrF₂ Filter (Photons/s)
 - Daytime Count Rate SrF₂ Filter (Photons/s)
 - Daytime Chopped Count Rate SrF₂ & BAF₂ Filters (Photons/s)
 - Dark Count (Counts/s) Used for Data Quality Control
- Level 1 Products
 - Nighttime Along-Track Radiance at 135.6 nm
 - Daytime Along-Track Radiance at 135.6 nm
 - Daytime Along-Track LBH Radiance

Level 1 Product Nadir Radiance

Level 2 Products (Primary)

HERMOSPHERIC & IONOSPHERIC RESEARCH

- Level 2 Primary Products (Nighttime)
 - Vertically Integrated Square of Electron Density
 - N_{max} (Peak Electron Density) Gradient Along Track

Level 2 Products (Secondary)

-60

-40

-20

Latitude

- Location of auroral oval (Night)
- Location and magnitude of Anomaly crests and trough
- Location and depth of F-region plumes
- Location, width and depth of midlatitude trough
- Location, width and depth of midlatitude depletions
- Peak electron density N_{max} along track using MSIS/IRI-90
- Location and magnitude of dusk anomaly peaks (Terminator)
- O/N₂ Column Ratio Along Track Using Emission Model (Day)
- Peak Electron Density N_{max} Along Track Using MSIS/IRI-90

Level 2 Products

- High resolution electron density along track, tomographically derived from GPS occultations and TIP nadir observations
- Global nighttime feature map Appleton peaks, instability regions, trough, N_{max} gradient, 90-min updates, derived from multiple SVs
- Auroral boundary map global nighttime, 90-min updates, derived from multiple SVs

Auroral Boundary Map

High Resolution Electron Density

- Level 4 Product
 - Electron density nighttime map v. altitude, latitude and longitude, derived from multiple SVs and GPS occultation data using assimilative model

Model

Nighttime 90-min Data Coverage

- Vertical Information from Occultations
- Horizontal Information from TIP
- Temporal Information from GPS **Stations**

Using TIP Data

- Proliferation of satellite-based ionospheric measurement systems
 - Optical and Radio-based
- Optical techniques
 - UV limb scanning
 - UV disk scanning
 - UV disk imaging
- Radio techniques
 - Radio Occultation
 - Beacon tomography
 - Radar altimetry
- Coincident and orthogonal measurements
- Assimilative models continuous, medium-resolution 3D volume
- Inversion techniques temporal, high-resolution 2D image

How Will the Tiny Ionospheric Photometer Measurements Be Used?

- Primary Goal: Provide Accurate Characterization of Ionospheric Electron Density Gradients
 - Inaccuracies in GPS occultation measurements of electron density due to gradients
 - TIP measurements will be used to correct for gradients
- Secondary Goals:
 - Location of auroral oval TIP measured 135.6 nm emission produced by aurorae
 - Location of Appleton peaks infer ionospheric dynamics
 - Detection of F-region plumes specify instability conditions
 - Add to Ionospheric & Thermospheric Climatology Databases

HERMOSPHERIC & IONOSPHERIC RESEARCH

0 20 Latitude (Degrees)

40

-20

Radiance

Smoothed Radiance Map 260.0 700 240.0 220.0 600 200.0 180.0 Altitude (km) 400 160.0 160.0 Radiance 120.0 100.0 300 80.0 60.0 40.0 200 20.0 100 0.0 0 Latitude (Degrees, N) 20 -20

Retrieved Electron Density

Retrieved Electron Density

- Unique opportunities for low latitude/equatorial science during constellation rollout
- First Year
 - Highest horizontal resolution better than 10-km from 475km orbit altitude
- Subsequent years
 - All sensors near 750-km altitude

- Global coverage of low latitude/equatorial ionosphere
 - Specify Appleton anomaly
 - Significantly improve data assimilation models
 - Storm dynamics
 - Detect instabilities
 - Investigate precursor conditions

15-min coverage

- Latitudinal snapshot over fixed site every ~90 min
- Precursor conditions (winds and electric field)
- Verify instability generation
- Investigate effect of drivers on instability generation
- Test against ground-based sensors

Summary

Molecular Nitrogen

- Thermospheric Diagnostic
 - May be Able to Infer Ionosphere
 - Should Observe Dynamical Effects in Twilight

• Nighttime: Measures Intensity of Naturally Occurring Recombination Airglow

- Caused by Decay of Nighttime Ionosphere
- Produces Light at 135.6 nm Atomic Oxygen
- Ionospheric Diagnostic
- Daytime: Measures Intensity of Naturally Occurring Electron Impact Excited Airglow
 - Caused by Excitation of Oxygen and Nitrogen
 - Produces Light at 135.6 nm (Atomic Oxygen) and in Lyman-Birge-Hopfield Bands of 700

What **TIP** Measures

– Similar to ground-based all-sky imager

– Details of anomaly crests, trough, and depletions

– 3 orders of magnitude more sensitive

• High Resolution

altitude

than IMAGE

• High Sensitivity

- 150 counts/s/Rayleigh

- 10-km horizontally during constellation rollout
- 30-km horizontally from 750-km

- 2 orders of magnitude more sensistive than GUVI for equivalent pixel size
- Footprint of TIP sensor across all-sky image

- No TIP products are produced and processed on-orbit
 - All are produced post-pass, on the ground
- Most products are produced by simple manipulation of the raw data
 - Examples
 - Multiplication by a scalar (Calibration to Radiance units)
 - Derivative of observed radiance
 - Level 0, 1, & Most Level 2 products easily produced at CDAAC
 - Some Level 2 and Higher Level products will require additional processing
 - Initially processed at NRL and transmitted to CDAAC
 - May eventually be accommodated at CDAAC
- We Have the Global Assimilating Ionospheric Model at NRL
 - Required to produce Level 4 products
 - On-going research and operational GAIM work