Assimilation of GPS Radio Occultation Data for Global Weather Prediction at CWB

> Jen-Cheng J. Chang CCU/DAS

Outline

- GPS RO observations
- CWB's 3DVAR System
- 2D GPS Ray-tracing Operator
- Some testing results
- Summary
- Things to do

What to assimilate?

GPS Radio Occultation measurements:

- 1. Excess phase: caused by the bending of the radio signal at two frequencies: 1227.6 MHz, 1575.4 MHz.
- 2. Excess Doppler frequency shift: estimated by the time derivative of excess phase.
- 3. <u>Bending angle</u> and impact parameter: derived from Doppler frequency shift based on satellite geometry (impact parameter is assumed constant at GPS and LEO).
- 4. *<u>Refractivity</u>*: calculated from bending angle through the Abel inversion (the refractivity is assumed spherically symmetric).
- 5. **Temperature and pressure:** retrieved from refractivity using the hydrostatic equation and neglecting water vapor content.

Why bending angle? Accuracy

- The total effect of atmospheric refractivity along the ray path can be included.
- The effect of the ionosphere can be largely removed.
- Problems that are unique to GPS refractivity retrieval from bending angle can be avoided (e.g., the upper boundary condition for the Abel inversion and the ill-poseness of the Abel inversion under super-refraction).
- Providing a benchmark for developing a fast and accurate GPS refractivity assimilation method.
- Computational cost may be significantly reduced by running ray-tracing on multiple processors.

Why not bending angle? *Efficiency*

Why Refractivity

- 1. The computational cost is low to assimilate N.
- 2. A priori separation of temperature and moisture information is not required.
- 3. A weighted average (or a so-called *linearized non-local operator*) might be sufficient to account for the integrated effect of the atmosphere to CI

for the integrated effect of the atmosphere to GPS measurements.

3DVAR System at CWB

CWB's 3DVAR System

- Based on NCEP's SSI (version 1999)
- Operational since May 2003
- Official version: T179/L30 (i.e., 540 x 270 x 30), running with 3PE (on Fujitsu 5000)
- Testing version: T79/L30 (i.e., 240 x 120 x 30), running with 1PE
- Incremental approach: only 1 outer loop, with 100 inner loops (*currently testing 2 outer* updates with 70/30 iterations, respectively)
- No 3- and 9-hr forecasts for temporal interpolation to observational time.

CWB 3DVAR (Contd.)

Analysis variables:

vorticity (ζ), unbalanced divergence(D'), unbalanced virtual temperature (T_v '), unbalanced log of surface pressure ($\ln p_s$ '), specific humidity (q)

- Implicitly including a linear balance constraint
- Additional constraint: divergence tendency
- Background term at spectral space, observational terms at physical space

Formula of CWB/3DVAR (i.e. NCEP/SSI) (Parrish and Derber, 1992)

Cost-function to be minimized:

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{2}[\mathbf{y} - H(\mathbf{x}_b + \mathbf{C}\mathbf{w})]^T\mathbf{R}^{-1}[\mathbf{y} - H(\mathbf{x}_b + \mathbf{C}\mathbf{w})] + J_c$$

where

 $\mathbf{w} = \mathbf{C}^{-1}(\mathbf{x} - \mathbf{x}_b)$ Coefficients of error weighted analysis increments

 $\mathbf{x} = \mathbf{x}_b + \mathbf{C}\mathbf{w}$

 $\mathbf{B} = \mathbf{C}\mathbf{C}^T$ \mathbf{x}_b $\mathbf{R} = \mathbf{F} + \mathbf{O}$

H

Analysis variables Background error covariance matrix 6-hr forecast of analysis variables Observational & Representative error covariance matrix (Nonlinear) observational (forward) operator Observations

Formula (Contd.)

Gradient:

$$\frac{\partial J}{\partial \mathbf{w}} = \mathbf{w} - \mathbf{C}^T \mathbf{L}^T \mathbf{R}^{-1} [\mathbf{y} - H(\mathbf{x}_b + \mathbf{C}\mathbf{w})] = -\mathbf{f}(\mathbf{x})$$

where

W

 \mathbf{y}_m

$$\mathbf{L} = \frac{\partial H}{\partial \mathbf{x}} \text{ tangent linear operator of } H; \quad \mathbf{L}^T \text{ adjoint operator of } \mathbf{L}$$

$$\mathbf{Outer Loop:} \quad \text{At } m\text{-th iteration:} \qquad \mathbf{w} = \mathbf{w}_m \quad \mathbf{x} = \mathbf{x}_m \quad \mathbf{w}_0 = 0$$

$$\text{At } (m+1)\text{-th iteration:} \qquad \mathbf{w}_{m+1} = \mathbf{w}_m + \mathbf{d}$$

$$-\frac{\partial J}{\partial \mathbf{w}}\Big|_{m+1} = \mathbf{C}^T \mathbf{L}_m^T \mathbf{R}^{-1} \mathbf{y}_m - \mathbf{w}_m - (\mathbf{I} + \mathbf{C}^T \mathbf{L}_m^T \mathbf{R}^{-1} \mathbf{L}_m \mathbf{C}) \mathbf{d} = 0$$

$$\mathbf{here}, \qquad \mathbf{f}(\mathbf{x}_m) \qquad \mathbf{forcing vector} \qquad \mathbf{A}(\mathbf{x}_m)$$

$$\mathbf{coefficient matrix}$$

Linear Conjugate Gradient Method

 $-\mathbf{p}_k^T \mathbf{d}_k$

or

 $\alpha_{k} =$

At the *k*-th update:

$$\mathbf{d}_k = \mathbf{d}_{k-1} + \boldsymbol{\alpha}_k \mathbf{p}_k$$

where,

$$\alpha_k$$
: step size

 \mathbf{p}_k : search direction

Therefore,

$$\mathbf{f}_k = \mathbf{f}_{k-1} - \boldsymbol{\alpha}_k \mathbf{A} \mathbf{p}_k$$

$$\boldsymbol{\alpha}_{k} = \frac{\mathbf{p}_{k}^{T} \mathbf{f}_{k-1}}{\mathbf{p}_{k}^{T} \mathbf{A} \mathbf{p}_{k}}$$
to r

to minimize: $\mathbf{f}_k^T \mathbf{A}^{-1} \mathbf{f}_k$

$$\frac{\mathbf{p}_{k}^{T} \mathbf{p}_{k}}{\mathbf{p}_{k}^{T} \mathbf{p}_{k}} + (\mathbf{L}_{m} \mathbf{C} \mathbf{p}_{k})^{T} \mathbf{R}^{-1} [\mathbf{y}_{m} - \mathbf{L}_{m} \mathbf{C} \mathbf{d}_{k-1}] - \mathbf{p}_{k}^{T} \mathbf{w}_{m}$$

$$\mathbf{p}_k = \mathbf{f}_{k-1} + \beta_{k-1} \mathbf{p}_{k-1}$$

 $\mathbf{p}_1 = \mathbf{f}_0$

$$\beta_k = \frac{\mathbf{f}_k^T \mathbf{f}_k}{\mathbf{f}_{k-1}^T \mathbf{f}_{k-1}}$$

(for orthogonality)

2D GPS Ray-tracing Operator

Courtesy of X. Zou

A slightly modified version of the 2D GPS ray-tracing operator from Zou et al. (1999) is implemented

Original Operator

- Calculating N on the vertical velocity (half) level, but using variables (T and q) at the following model layer (full level) except p
- Calculating the geometric heights of vertical grids on the half-level, but treating *T* as given at the half-level in the hypsometric equation
- Results: a lower tropopause bias

Revised Operator

- Calculating N on the model (full) layers, NOT the vertical velocity (half) level
- Calculating the geometric heights of vertical grids on the *full-layer*, and treating *T* back to where it belong

CWB Model's Vertical Grids

Figure 3.1: The finite difference vertical structure of the forecast model.

$L18 \rightarrow L30$

Data Assimilation Procedure of GPS RO Observation

Experiments

Name	Remarks
nogps	All other available data, except GPS (Step I only)
gpswt5	Including GPS observation, but with 10 ⁵ O-weighting
gpswt6	Including GPS observation, but with 10 ⁶ O-weighting

Observational Weighting Profile Used

Case Study

- July 4, 2002, 1200UTC
- From GFZ (GeoForschungs Zentrum) Potsdam CHAMP-ISDC (<u>http://isdc.gfz-</u> potsdam.de/champ/)
- 41 soundings during 09-15UTC

Observations Used

Variables	Types	Amounts
Winds	rawinsonde < pibal < wind profile < NEXRAD < AIREP < ACARS < SATOB < SHIP < BUOY < surface SSM/I wind speed	111192
Temperature	rawinsonde 、AIREP 、SHIP	43088
Water Vapor	rawinsonde SHIP	10567
Surface Pressure	rawinsonde surface land SHIP	13770
Bending Angle	GPS/RO	6586(41 soundings with vertical resolution 200m)

Data Distributions

GPS Soundings

GPS1 for 1 sounding test

GPS_only Exp (1 sounding)

- Systematically larger model bending angles:
 - lower p_{sfc} ,
 - dryer q

 \rightarrow

- warmer T_v

Analysis increments:

wgt5

- lower adjustment indeed.
- wgt6 : wgt5 ~ 5 : 1

Analysis increments: q E-W cross section at lat = $47.2^{\circ}N$ & at σ = 0.5658

Analysis increments: T_v E-W cross section at lat = 47.2 & at σ = 0.5658

not as localized as q

•~6:1

wgt5

Analysis increments: v E-W cross section at lat = 47.2 & at σ = 0.5042

•~6:1

Analysis increments: U N-S cross section at lon = 172.4E & at σ = 0.5042

•~6:1

Multi-sounding Results

Cost-Function

gpswt5

Analysis Increments (P_{sfc})

gps_only (wt6)

gpswt5

Analysis Increments (q)

norad

gps_only (wt6)

gpswt5

Analysis Increments (T_v)

gps_only (wt6)

gpswt5

Analysis Increments: u

gps_only (wt6)

nogps

gpswt5

Analysis Increments: v

gps_only (wt6)

gpswt5

Forecasts

Analysis: Day 0

gpswt5 - nogps

nogps / gpswt5

Forecasts: Day 3

gpswt5 - nogps

Forecasts: Day 5

gpswt5 - nogps

nogps / gpswt5

Anomaly Correlation (NH: 20°N-80°N / SH: 80°S-20°S)

	Exp	24-hr	48-hr	72-hr	96-hr	120-hr
SLP	gpswt5	0.8695 / 0.9290	0.8374 / 0.8965	0.7437 / 0.8520	0.6696 / 0.8255	0.6636 / 0.7552
	nogps	0.8695 / 0.9293	0.8380/ 0.8965	0.7433 / 0.8524	0.6683 / 0.8230	0.6630 / 0.7497
500 H	gpswt5	0.9380 / 0.9486	0.9380 / 0.9315	0.8831 / 0.9600	0.7873 / 0.8520	0.7590 / 0.7492
	nogps	0.9382 / 0.9487	0.9383 / 0.9309	0.8829 / 0.9555	0.7869 / 0.8495	0.7598 / 0.7413

(Yellow means better!)

Root-Mean-Squared Errors (NH / SH)

	Exp	24 hr	48 hr	72 hr	96 hr	120 hr
Slp (mb)	gpswt5	3.0394 / 3.8771	3.0718 / 4.7778	<mark>3.8642</mark> / 6.0524	4.5628 / 6.7831	4.5594 / 7.9602
	nogps	3.0399 / 3.8722	3.0666 / 4.7803	3.8738 / 6.0488	4.5845 / 6.8404	4.5691 / 8.0626
500 H (m)	gpswt5	26.5011 / 37.9443	24.5412 / 43.8359	31.5442 / 52.9972	42.8493 / 65.8923	43.2711 / <mark>82.1605</mark>
	nogps	26.4472 / 37.9236	24.4784 / 44.0226	31.5891 / 53.1366	41.9354 / 66.4673	43.2277 / 83.5716
850 T (C)	gpswt5	1. <mark>8392</mark> / 2.7345	2.1729 / 3.0421	2.5124 / 3.5993	2.8975 / 4.0409	3.1161 / 4.3594
	nogps	1.8392 / 2.7281	2.1707 / 3.0409	2.5127 / 3.6115	2.8959 / 4.0756	3.1116 / 4.3951
200 Wind (m/s)	gpswt5	5.0369 / 6.6639	7.4152 / 8.2302	10.1056 / 10.0843	12.3924 / 13.1967	13.2515 / 15.9940
	nogps	5.0392 / 6.6706	7.4168 / 8.2561	10.1036 / 10.1231	12.3933 / 13.1900	13.2855 / 16.0811

Summary

- A minorly revised 2D ray-tracing operator and its tangent-linear/adjoint operators (Chang et al., 2003, based on Zou et al., 1999) are currently implemented and tested on CWB/GFS.
- Though marginal, the forecasting impact in this case study is generally positive, which is encouraging!

Summary (II)

• Upper-bound maximal analysis increments (GPS_only_wt6):

 $p_{sfc} \sim 4 hPa$ $T_v \sim 7 K$ $q \sim 5 g/kg$ $u, v \sim 2.5 m/s$

- GPS_only 1-sounding tests suggest: maximal analysis increments are about 5-7 times smaller for the wt5 experiment.
- CWB's analysis increments without GPS:

p_{sfc} ~ 1 hPa T_v ~ 4-7 K q ~ 2-3 g/kg u, v ~ 10-15 m/s

Summary (III)

- Additional increments added by GPS observation are generally one order smaller, except moisture (1-2 g/kg) and lower-level temperature (2 K).
- Substantial differences occurred in Day-5 forecasts.

Things To Do

- Impact studies on CWB/GFS analysis and forecasts
- QC
- O matrix
- Speed up
 - Local refractivity operator
 - Data thinning
 - Parallelizing
- Linearized non-local refractivity operator