GAIM (Global Assimilative Ionospheric Model) And Ionospheric RO Data Assimilation

George Hajj A. J. Mannucci

Presenter: A. J. Mannucci

Jet Propulsion Laboratory (JPL) California Institute of Technology

Overview of GPS Remote Sensing Applications

- FROM GROUND
 - Troposphere
 - Ionosphere
- FROM SPACE
 - Troposphere
 - Stratosphere
 - Ionosphere
 - Plasmasphere
- Ocean Reflection

- Single Frequency Retrievals
- Dual Frequency Retrievals
 - TEC = const. x (L1 L2)
 - α ~ dTEC/dt

$$\alpha(a) = 2a \int_{a}^{\infty} \frac{1}{\sqrt{a'^{2} - a^{2}}} \frac{d \ln(n)}{da'} da'$$
$$\ln(n(r)) = \frac{1}{\pi} \int_{nr}^{\infty} \frac{\alpha}{\sqrt{a^{2} - r^{2}n^{2}}} da$$

Example of electron density profile

GPS/MET vs. ionosondes NmF2 Comparison

COSMIC Coverage With Other LEOs

COSMIC in red; CHAMP in green; SAC-C in blue; and GRACE in purple

COSMIC Coverage in 90 Minutes

Differenced TEC

IONOSPHERIC TOMOGRAPHY

Let the electron density function be denoted by $f(\mathbf{r})$ where \mathbf{r} is a vector from a suitable origin to a given point in the image. A TEC measurement is then given by:

$$C_j = \int_{Raypath \ j} f(\mathbf{r}) \ ds \ ; \quad j = 1, \ no. \ of \ links \ , \qquad (1)$$

where ds is an increment along a specific link j. We choose the following basis to span our solution:

$$f_i(\underline{r}) = 1 \quad \text{if} \quad \underline{r} \in \text{pixel } i ; \qquad (2)$$
$$= 0 \text{ otherwise } .$$

We approximate $f(\mathbf{r})$ by its digitized function, $f_d(\mathbf{r})$, which is defined by:

$$f_d(\mathbf{r}) = \sum_i x_i f_i(\mathbf{r}) , \qquad (3)$$

where x_i is the average of $f(\mathbf{r})$ in the *i*th pixel. Equation (1) can then be written in matrix form as:

$$C = D \quad X + E$$

$$m \times 1 \quad m \times n \quad n \times 1 \quad m \times 1$$
, (4)

JPL TEC Science

Ionization from particle precipitation

magnetospheric, thermospheric

Note: this figure is illustrative

	Space Assets		Land Assets	
	In-situ	Remote	Network	Cal/Val Sites
Present	 SSJ/4 (DMSP) SSIES (DMSP) SSMS (DMSP) TED (POES) MEPED (POES) SSJ/5 (DMSP) 	 CHAMP SAC/C IOX GUVI (TIMED) SSUSI (DMSP) SSULI (DMSP) 	 DISS IGS SumiNet Regional GPS Network 	 Incoherent Scattering Radar Sites
Future	• SESS (NPOESS)	 C/NOFS COSMIC GPSOS (NPOESS) SESS (NPOESS) 		

- A Global Assimilative Ionospheric Model
- The Equivalent of NWP Models
- Based on First-Principles Physics
- Solves the Electro-Hydrodynamics Governing the Spatial and Temporal Evolution of Electron Density in the Ionosphere
- Assimilates Various Types of Ionospheric Data by Use of the Kalman Filter and 4DVAR

- The existence of a wide range of ionospheric data
- Need for Accurate Ionospheric Calibration
 - Navigation
 - Communication
 - Radar
- Monitoring of space weather events
- Improve our understanding of ionospheric response to solar activities and magnetic storms
- Indirect observation of upper atmosphere
- Combines models and measurements optimally

Data Assimilation in a Nutshell

Physics Model

Mass and Momentum Conservation

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{v}_i) = P_i - L_i \qquad (O+, H+, He+, N^2+, O^2+, NO+)$$

$$m_i n_i \left(\frac{\partial}{\partial t} + \mathbf{v}_i \cdot \nabla\right) \mathbf{v}_i = -\nabla (n_i k T_i) + m_i n_i \mathbf{g} + n_i q_i (\mathbf{E} + \mathbf{v}_i \times \mathbf{B}) - m_i n_i \mathbf{v}_{in} (\mathbf{v}_i - \mathbf{U})$$

$$m_e n_e \left(\frac{\partial}{\partial t} + \mathbf{v}_e \cdot \nabla\right) \mathbf{v}_e = -\nabla (n_e k T_e) + m_e n_e \mathbf{g} + n_e q_e (\mathbf{E} + \mathbf{v}_e \times \mathbf{B}) - m_e n_e \mathbf{v}_{en} (\mathbf{v}_e - \mathbf{U})$$

$$n_e = \sum_i n_i$$

The *true state*: a discrete representation of the true ionospheric state (electron density) at time k

The *analysis*: an estimate of x_k^t given measurements at time k, and a forecast x_k^f The *forecast*: an estimate of x_k^t given measurements up to time k

The observations are related linearly to the true state through an *observation operator* H_k . ε^{o} is an *observational error*

The observational error is composed of the *measurement* error, ε^m , and a *representativeness error*, ε^r

The truth state at time k+1 is related to the state at time k via the *forward model* Ψ and a *model error* ε^q

Kalman Filter $x_{k}^{a} = x_{k}^{f} + K_{k} \left(m_{k}^{o} - H_{k} x_{k}^{f} \right)$ $K_{k} = P_{k}^{f} H_{k}^{T} \left(H_{k} P_{k}^{f} H_{k}^{T} + R_{k} + M_{k} \right)^{1}$ $P_{k}^{a} = P_{k}^{f} - K_{k}H_{k}P_{k}^{f}$ $x_{k+1}^f = \Psi_k x_k^a$ $P_{k+1}^{f} = \Psi_{k} P_{k}^{a} \Psi_{k}^{T} + Q_{k}$

- Computational complexity and speed
- Different approaches
 - Full Kalman
 - Ensemble Kalman
 - Reduced Kalman
 - Partitioned Kalman
 - Band Limited Kalman
 - Optimal Interpolation
- Importance of error covariances
- Propagation of the state covariance matrix
 - Based on a physical model
 - Gauss-Markov Process

$$x_{k}^{a} = x_{k}^{f} + K_{k} \left(m_{k}^{o} - H_{k} x_{k}^{f} \right)$$

$$K_{k} = P_{k}^{f} H_{k}^{T} \left(H_{k} P_{k}^{f} H_{k}^{T} + R_{k} + M_{k} \right)^{1}$$

$$x_{k+1}^{f} = \Psi_{k} x_{k}^{a}$$

$$P_{k}^{a} \approx P_{k}^{f} (\text{Near diagonal})$$

$$P_{k}^{a} = P_{k}^{f} - K_{k} H_{k} P_{k}^{f}$$

$$P_{k+1}^{f} = \Psi_{k} P_{k}^{a} \Psi_{k}^{T} + Q_{k}$$

As absolute TEC

 Requires estimation of biases

 As relative TEC (Difference from first measurement of a new arc)

 Introduces strong correlation to the first data point

 As differenced TEC (TEC Change between consecutive measurements)

 Susceptible to larger measurement and representation noise

GAIM vs. Abel **Comparisons at the Occultation Tangent Point**

ABEL Cmp 2002-07-22-00:16iox gps29

Profiles are obtained by:

- **Abel Inversion** • ("abel")
- **GAIM Climate (no** • data) ("clim")
- **GAIM Analysis** • assimilating ground **TEC data only** ("ground")
- **GAIM Analysis** • assimilating IOX **TEC data only** ("iox")
- **GAIM** Analysis • assimilating both ground and IOX data ("ground+iox")

JPL EXAMPLES OF PROFILES RETRIEVED BY USE OF DIFFERENT DATA SETS

NASA

GAIM vs. Abel NmF2 Comparison

GAIM vs. Abel HmF2 Comparison

Data Assimilation in a Nutshell

4DVAR

Minimize the Cost Function:

$$J(n;\alpha) = \sum_{k=1}^{m} (y_k - H_k n(t_k;\alpha))^T W^{-1} (y_k - H_k n(t_k;\alpha)) + (\alpha - \alpha_0)^T P^{-1} (\alpha - \alpha_0)$$

- y_k Observations (e.g., total electron content TEC) at epoch t_k
- **W** Covariance of observation errors
- *n* State variables (volume density)
- H_k Observation operator
- $\alpha\,$ Model parameters related to driving forces or model inputs to be adjusted
- $\alpha_{\rm 0}\,$ Empirical parameters
- *P* Covariance of error in α_0

Forward and Adjoint Models

$$J(\theta) = \sum_{k \neq 1} \|y_k - H_k n_k(\theta)\|^2 + \|\theta - \theta_0\|^2$$

$$J(\theta) = k \sum_{k \neq 1} \|y_k - H_k n_k(\theta)\|^2 + \|\theta - \theta_0\|^2$$

$$n_{k+1} = A_k(\theta)n_k + P_k$$

$$n_{k+1} = A_k(\theta)n_k + P_k$$

$$\frac{\partial J}{\partial t} = -2\sum_{k \neq 1}^r \left(y_k - H_k n_k\right)^T H_k \frac{\partial n_k}{\partial \theta} + 2\theta$$

$$\frac{\partial H}{\partial \theta} = -2k \sum_{k=1}^r \left(y_k - H_k n_k\right)^T H_k \frac{\partial h_k}{\partial \theta} + 2\theta$$

$$\frac{\partial h_k + 1}{\partial \theta} = A_k \frac{\partial h_k}{\partial \theta} + \frac{\partial A_k}{\partial \theta} n_k$$

 θ is a driver for the phyics

€

€

€

€

€

$$\lambda_{k} = \frac{1}{2} = A_{k}^{T} \lambda_{k} = \frac{1}{2} H_{k}^{T} (y_{k} - H_{k} h_{k})$$

$$\lambda_{k} = 0$$

Define an "adjoint state variable"

$$\frac{\partial U}{\partial t} = \sum_{k=1}^{r-1} \left(\lambda_{k}^{T} \frac{\partial A_{k}}{\partial t} m_{k} \right) \frac{\partial A_{k}}{\partial t} m_{k} + \lambda_{0}^{T} A_{0} \frac{\partial \partial B_{0}}{\partial t} + 2\theta \theta$$

Do the math...

€

$$\frac{\partial J}{\partial \theta} = \sum_{k=0}^{r-1} \left(\lambda_k^T \frac{\partial A_k}{\partial \theta} n_k \right) \frac{\partial A_k}{\partial \theta} n_k + \lambda_0^T A_0 \frac{\partial n_0}{\partial \theta_0} + 2\theta$$

Trade: computation of grad *J* by finite difference versus computation of $\frac{\partial A_k}{\partial \theta}$ and derivative of state *n* with respect to driver.

Step 1: Integrate the model equation forward in time

$$n_{k+1}^N = A_k^N(\theta) n_k^N + P_k^N, \ n_0^N = n_0(\theta).$$

Step 2: Integrate the adjoint equation backward in time:

$$\lambda_{k-1} = A_k^N(\theta)^T \lambda_k - 2(H_k^N)^T (y_k - H_k^N n_k^N),$$

$$\lambda_r = 0.$$

Step 3: Compute the gradient:

$$\nabla J(\theta) = \sum_{k=0}^{r-1} \lambda_k^T \frac{\partial A_k^N(\theta)}{\partial \theta} n_k^N + \lambda_0^T A_0^N(\theta) \frac{\partial n_0^N(\theta)}{\partial \theta}.$$

A Driven Ionosphere

Parameterization of ExB Drift

Drift velocity at the equator is modeled as

$$v_{eq}(t) = v_{eq,0}(t) + \sum_{k=1}^{N} \alpha_k \phi_k(t)$$

- $v_{eq,0}$, empirical drift velocity at the magnetic equator
- $-\phi_k$, *k*th cubic spline function
- $\alpha_{k'} k^{th}$ coefficient

Parametrization of Wind

144 wind parameters covering ±30° latitudes globally

Meridional Wind Perturbation

- Southward wind to represent storm time equatorward wind perturbation
- Decay as approaching lower latitudes

Wind Estimation

