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Why Regional Climate Modeling?

« Downscaling of climate variability and change at the
regional scale (e.g., climate change effects on water
resources, ecosystem, extreme weather; hurricane
frequency; storm track; distribution of MCS and warm
season precipitation; use of seasonal forecasts for water
management)

 Process studies (e.g., Amazon biomass burning and
aerosol effects; orographic effects; land-atmosphere
Interactions; ocean-atmosphere interactions; sea ice;
cloud-radiation feedbacks)

 Upscaling of regional phenomena with global
consequences (e.g., subtropical and tropical eastern
boundary upwelling regimes; subgrid-scale clouds;
organized convection; gravity wave drag)



Regional climate is determined by the interaction of forcings
and circulations that occur at the planetary, regional, and local
spatial scales
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GCM Simulated Precipitation and Snowpack
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Mesoscale Climate Factors
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Mesoscale Climate Factors

- Low-level Jets
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Downscaling by Regional Climate Modeling




History and Current Status

First Regional Climate Model -- RCM (Dickinson and
Giorgi 1989) was developed based on PSU/NCAR MM4
to address downscaling needs

Today there are more than 30 regional climate modeling
groups worldwide (US ~ 15; Europe ~ 10;
Asia/Australia/Canada ~ 5 - 10)

Most RCMs were developed based on mesoscale weather
forecasting models

More active research is related to climate change
(regional climate change scenarios and impact
assessment)

Intercomparison projects: PIRCS, ARCMIP, RMIP,
PRUDENCE, NARCCAP, ENSEMBLE



History and Current Status

Alternative approaches: variable resolution GCM and high
resolution AGCM

The NSF/DOE sponsored RCM workshop in 2001 (Leung
et al. 2003 BAMS) concluded that all downscaling
approaches are valid and future development should
proceed along parallel paths

n 2001, WCRP WGNE appointed a working group led by
_aprise to examine the validity of regional climate modeling

Big-Brother experiments confirmed the downscaling ability
of RCM

A WCRP-sponsored workshop was held in 2004 (Lund,
Sweden) to discuss modeling issues




El Nino Precipitation Anomaly

RCM simulation of 1980-2000 driven by NCEP reanalysis
Anomaly calculated based on 6 El Nino cases minus 20 year mean

Observation RCM Simulation NCEP Reanalysis

PRISM (mm/day) JFM El~nino—year Prec. Anom.  (MM5) JFM Precip. anom. for El~Nino (NCEP_re)  Jpm
54N 2 : 540 54

Leung et al. 2003 JC



Need to predict changes in circulation and
represent orographic effects
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How Well Can We Simulate Regional Precipitation?

13 sub—regions based on UW data
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RCM Development Using WRF

Since 2003, NCAR has supported a project to develop
regional climate modeling capability with the Weather

Research and Forecasting (WRF) model

WREF Is a next generation mesoscale model: it uses high-
order numerical techniques that maintain accuracy and

stability and is applicable to any scale of atmos
simulation

The WRF physics suite encompasses options t

kKilometers

nheric

nat have

peen tested for grid scales from tens of meters to tens of

Preprocessors can handle data from global/regional

analysis and GCMs (using a converter from MM5 to WRF)

Future physics development is only going to WRF, and new
capabilities are planned for regional earth system modeling



WRF Modeling System

WRF Software Infrastructure




WRF Dynamical Core

* Mass Coordinate Core
— Terrain-following hydrostatic pressure vertical coordinate
— Arakawa C-grid

— 3" order Runge-Kutta split-explicit time differencing,
5t or 6™ order differencing for advection

— Conserves mass, momentum, dry entropy, and scalars
using flux form prognostic equations

* NMM Core

— Terrain-following hybrid sigma vertical coordinate
— Arakawa E-grid
— Explicit Adams-Bashforth time differencing

— Conserves kinetic energy, enstrophy and momentum
using 2" order finite differencing



WRF Physics Options

— Microphysics:

— Cumulus Convection:

— Shortwave Radiation:
— Longwave Radiation:

— Turbulence:

— PBL:
— Surface Layer:
— Land-Surface:

Kessler-type (no-ice),Reisner,
Lin et al. (graupel included),
WSM3/5/6, Ferrier

New Kain-Fritsch, Grell Ensemble,
Betts-Miller-Janjic

Dudhia (MM5), Goddard, GFDL, CAM*
RRTM, GFDL, CAM*

Prognostic TKE,
Smagorinsky, constant diffusion

MRF, MYJ, YSU
Similarity theory, MYJ

5-layer soil model, RUC LSM
Noah unified LSM, CLM*

* RCM effort



WRF Development Teams

Numerics and

Software
(J. Klemp)

Dynamic Model
Numerics
(W. Skamarock)

Software
Architecture,
Standards, and
Implementation
(J. Michalakes)

(R. Leung)

o Analysis and Community Operational
Data Assimilation L :
(C. Bishop) Validation Involvement Implementation
' P (K. Droegemeier) (W. Kuo) (G. DiMego)
Workshops,
Standard Analysis and Distribution, Data Handling
Initialization Visualization and Support and Archive
(W. Wang) (M. Stoelinga) (J. Dudhia) (G. DiMego)
Model Physics
(J. Brown)
Operational
Model Testing Atmospheric Requirements
3-D Var e . .
and Verification Chemistry (G. DiMego)
(J. Derber) :
(C. Davis) (G. Grell)
Land Surface
Models Operational
Advanced Ensemble (_J' Weg|.el) Forecaster Training
Techniques Forecasting Regional Climate (T. Spangler)
(D. Barker) (D. Stensrud) Modeling




Overall Approach

» Same source for all applications: weather and
forecasting research, climate process studies,
upscaling, and downscaling

« Compatible physics with CCSM: radiative transfer
(CAM3 radiation), land surface processes (CLM3)

o Extensible to regional earth system modeling:
regional ocean, sea ice, land (river transport,
dynamic vegetation, lake, groundwater), aerosol-
chemistry, biogeochemistry

« Two-way coupling with CCSM to address upscaling
ISSues



Estab
mode
MM5

Project Tasks

ish validity of WRF for regional climate
Ing using mostly existing capability (WRF and

nave very similar physics parameterizations)

Comparison of WRF and MM5 simulations

Examine effects of higher model resolution (via
nesting)

Implement CCSM physics (radiation and CLM)

Demonstrate downscaling of global climate
simulations

Address model development needs for upscaling
research



Model Configuration

Sea surface temperature, vegetation fraction, and
albedo are updated every 6 hours

Linear-exponential function for relaxation used In
10 layers of buffer zone

Same physics parameterizations for all domains
- Noah land surface model

- Kain-Fritsch/Grell-Devenyi convection scheme
- Ferrier microphysics

- RRTM and Dudhia shortwave radiation

- Mellor-Yamada-Janjic TKE scheme




Cold Season Orographic
Precipitation



Simulation of Cold Season Orographic
Precipitation
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Mean Precipitation (mm/day)
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Mean Surface Temperature (C)
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Mean Snowpack

« Comparison of snowpack at snotel sites

« Snowpack Is severely under-predicted at both
resolutions
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Does higher resolution improves climate
simulation in mountainous regions?

Realistic finer scale precipitation and surface
temperature structure

Improved orographic shadowing effect
Increased warm bias over the basins

Substantial increase in snowpack over the
nighest terrain only

Results not sensitive to cloud microphysics
parameterizations

n contrast to MMS, regional mean precipitation
decreases as spatial resolution increases
(numerics differences?)




Simulation of the 1993 Flood Case
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Forecast Experiment

» Forecast runs were Initialized at 12 UTC each
day and ran for 36 hours

 Results from 12 — 36 hours were analyzed
« Use same physics as In climate run

* Another set of forecast runs performed using
initial soil moisture and temperature from
climate run




Monthly Precipitation (June)

June, 12-38hr Forecasts June Continuous Simulation
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Monthly Precipitation (July)

July, 12—36hr Forecasts July Continuous Simulation

July 4km obs on WRF30 grid
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Monthly Winds (July)

July, 12—-36hr Forecasts, Flow at sigma=0.501 July, 12—-36hr Forecasts, Flow at sigma=0.844
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Model Level
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Sensitivity Simulations

Data Convection Land Model Rainfall
WRF GD Noah LSM 97mm
WRF BM Noah LSM 97mm
WRF KF Noah LSM 80mm
WRF GD RUC LSM 91mm
MM5 KF OSU LSM 95mm
WRF Fct GD Noah LSM 233mm
WREF Fct GD Noah LSM* 222mm
OBS(1/8°) 165mm

Note: All simulations at 30 km resolution  *Soil moisture based on climate runs



Summary

All climate simulations (different convection
schemes, land surface schemes, and initial land
surface states) under-predict precipitation
Intensity in the central Great Plains during the
1993 flood

Comparison of forecast and climate runs shows
stronger and deeper nocturnal Low Level Jet
(LLJ) and upper level flows in the forecast run

Both climate and forecast runs correctly captured
the nocturnal maxima in winds and rainfall

Simulations were not too sensitive to convection
schemes nor land surface initialization or
parameterizations



Cloud Resolving Simulation



Evaluation of Cloud Resolving Simulation
During IHOP 2002
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Cloud Top Pressure (6/30/2002 182
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TOA SW Albedo (6/30/2002 182
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Short-wave or Long-wave Radiative Flux (Wm

Comparison of Surface Fluxes

~180 W/m? difference
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Summary

The WREF clouds are less organized spatially
compared to the ISCCP retrievals and generally not
enough low clouds

The WRF high (ice) clouds are optically too thin

As a result, WRF SW albedo Is too low (0.21 vs
0.26) and OLR is about 2 W/m? too high

This leads to large bias in surface fluxes (LH and
SH) of about 180 W/m? too high

Running WRF as a cloud resolving model can be
useful in diagnosing deficiency in physics
parameterizations



Summary

WRF has comparable features (treatment of
boundary conditions, nesting, physics
parameterizations) to MM5 that has been widely
used in regional climate modeling

WRF is better suited for high resolution and cloud
resolving simulations than MM5

WRF has comparable skill in simulating cold season
orographic precipitation in the western U.S. and
warm season precipitation in the central U.S.

Physics parameterizations (radiation/land surface)
compatible with CCSM has been implemented




Summary

The framework for WRF-CLM coupling may be
extended to coupling with other models (e.g., ocean
and sea ice)

A preprocessor has been developed for
downscaling application (one-way coupling with
GCM)

Need community involvement to further develop
and test WRF for regional climate applications

Need to prioritize model development based on
science guestions



Workshop on Research Needs and Directions of Regional
Climate Modeling Using WRF and CCSM (March 22-23, 2005)

Organizing

committee: L. Ruby Leung, Bill Kuo,

Joe Tribbia, Phil Merilees

60 US and

International participants

Define research needs for the development of a
next generation community regional climate
model based on WRF and CCSM

Define upscaling and downscaling research that

can be adc

ressed by regional climate models

Develop a

nlan of actions that would meet the

research needs



CCSM2 SST Bias

MODEL - OBS

Large and Danabasoglu 2005



Large-Scale Effects of ASST < 0 off South
America and South Africa
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Two-Way Nested Domains

A 10-year simulation with two-way nesting over the
Western Pacific regional “Warm Pool”
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Zonal Mean Temperature Difference

ECHAM4(ORI) — ERA15: Temperature DJF ECHAM4(ORI) — ERA15: Temperature JJA
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Recommendations/Future Directions

« Development of WRF towards a Regional Earth System
Model — a comprehensive tool to address interdisciplinary
science questions

o Exploit high resolution modeling capability of WRF - How to
provide regional climate information for assessing societal
Impacts and managing resources; and examine how to
efficiently capture scale interactions and their impacts?

 Develop two-way nesting capability in WRF and CCSM -
How do local/regional processes affect the larger scale?



Proposed Modeling Framework

« WRF/ROMS (regional ocean modeling system) nested
within CCSM with WRF interacting with ROMS and

CAM, and ROMS interacting with WRF and POP (global
ocean model)
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