Introduction to GPS/GNSS in Atmospheric Sensing

T. P. Yunck

Jet Propulsion Laboratory California Institute of Technology

JEL

COSMIC Science Summer Camp Central Weather Bureau Taipei, Taiwan 30 May 2005

GPS Signal Coverage

Two L-band frequencies: L1: 1.58 GHz L2: 1.23 GHz

~3000 km

GPS Signal Structure

L1 Signal Spectrum

GPS Sounding Began With Geodesy

GPS Ground Arrays

PW: GPS vs Microwave Radiometer

Rocken et al., 2003

Maps of Precipitable Water (PW)

Effect of GPS on Relative Humidity Predictions NOAA Assimilation Studies 2000-2002

"GPS is one of the most cost effective remote sensing systems tested by FSL." Gutman et al., NOAA FSL, 2003

Observing From Space

Topex/Poseidon Altitude Error ~1 cm 1992 - present Concept proposed 1981 Goal: 10 cm alt. error Jason-1 Precise Orbit Determination

GPS Atmospheric Occultation

- High resolution profiles of:
	- –Bending angle
	- –Refractivity
	- –Density
	- –Pressure
	- –Temperature / Moisture
	- –Geopotential heights
- Temporal and spatial averages, 2D maps
- Global pressure contours, gradients, and geostrophic wind fields

LEO Receiver To GPS –

Some Occultation History

Planetary Radio Occultation

Mariner IV at **Mars** July 1965

Mariner IV at **Mars** 15 July 1965

Mariner V at Venus 19 October 1967

Pioneer Venus Orbiter 1979-1982

Data taken over multiple seasons

First recovery of zonal winds from pressure

Outer Planets: Jupiter and Saturn

Outer Planets: Occultation Retrieval Challenges

Uncertain composition and mixing Uncertain rotation rates Pronounced oblateness

High altitude methane clouds

Surface pressure was unknown to within a factor of \sim 1000 (answer: \sim 1.5 bars)

Saturn Ring Occultation

The rings act as a vast, thin, complex diffraction screen.

Sampling of the phase-amplitude hologram allows detailed recon- struction of the ring structure

Occultation Subjects: A Group Portrait

An Observation on the Terrestrial Planets

This atmosphere is too thin This atmosphere is too thick

A Sampling of Results

CHAMP-SACC Coverage, 1-7 June 2002

CHAMP

SAC-C

Comparing Three Techniques

High correlation between SAC-C and nearby radiosonde illustrates the accuracy and high resolution of GPS occultation temperatures profiles. The best available weather model (ECMWF) overestimates the tropopause by 2-4K.

Features:

Agreement to <1/2K between CHAMP and SAC/C below 20km.

Colder and sharper tropopause captured by **CHAMP and SAC/C** relative to ECMWF.

Significant difference between CHAMP and SAC/C in the upper stratosphere (most likely real), missed by the analysis

Refractivity Statistics

Model independent retrievals of CHAMP refractivity shows no significant bias relative to ECMWF between 7-40 km and a standard deviation of ~1% fractional N difference between 7-30 km. **Negative N-biases are seen below** 5km and above 40km. Statistics are obtained for the period 1-7 June 2002.

Bias at top is caused by extrapolation of bending above 40km with a constant scale height. A remedy-which still does not rely on a model-is a better parametrization of the upper mesosphere, enhanced signal SNR, enhanced orbits and ionospheric calibration.

Bias at bottom is due mostly to receiver tracking errors in very humid regions.

Temperature Statistics

Comparing GPS with AIRS

AIRS/GPS Matchups

Jan 2003, latitude -50 to -20 deg => 336 matchups

(see http://sciflo:8080/sciflo/Private/SciFloWiki/GpsAirsComparison for more)

AIRS/GPS Temperature & Water Vapor Comparison Plots

AIRS/GPS Temperature & Water Vapor Comparison Plots

AIRS/GPS Temperature Difference Statistics

Attractions of GPS Radio Occultation

- 1. High accuracy: Averaged profiles to < 0.1 K
- 2. Assured long-term stability
- 3. All-weather operation
- 4. Global 3D coverage: stratopause to surface
- 5. Vertical resolution: ~100 m in lower trop
- 6. Independent height & pressure/temp data
- 7. Compact, low-power, low-cost sensor

Joint AIRS/GPS Retrievals

Define the Problem

➤ How to best combine GPS and AIRS data such that information on horizontal structure (AIRS) and high-vertical resolution (GPS) are maintained

Solution

- Use horizontal gradient information from AIRS ➤
- \blacktriangleright Devise a new retrieval strategy for GPS occultations which does not assume spherical symmetry
- \blacktriangleright Assuming the horizontal gradient of AIRS, derive a high vertical resolution profile from GPS occultation

Implementation

- Compute atmospheric refractivity as a function of height based ➤ on AIRS derived temperature and humidity
- Interpolate AIRS refractivity to the occultation plane ➤
- \blacktriangleright Divide the occultation plane into pixels with resolution commensurate to those of GPS occultations in the vertical direction and to AIRS in the horizontal direction

Benefits of combining AIRS and GPS

- AIRS can be calibrated against GPS data for weather and long term climate research
- Obtain high resolution in the vertical (from GPS) and \bullet horizontal (from AIRS) directions
- Resolve dry/wet ambiguity in interpretation of refractivity in \bullet the lower troposphere
- Gross consistency in GPS and AIRS retrievals can serve as \bullet a quality control on both data systems

The next wave…

COSMIC/Rocsat3 (6)

EQUARS C/NOFS NPOESS (3) **METOP** $ACE+$ (4)

COSMIC + EQUARS Soundings in 1 Day

COSMIC EQUARS Radiosondes

Crosslink Occultation: Absorption & Bending

ATOMS: Active Tropospheric Ozone & Moisture Sounder

Exchange of microwave crosslinks between pairs of occulting LEOs.

The changing signal amplitude is measured to assess absorption by molecular ozone and moisture.

Crosslink Occultation (cont.)

Bonus: The Global Ionosphere

Global Ionospheric Electron Map from Ground GPS Data

Challenge: Improving observation of the vertical

Snapshot 3D Ionospheric Imaging

Applications

- Observe ionospheric dynamics and refine models
- Chart the course and evolution of space storms
- Provide near term prediction of space weather
- Study TIDs and global energy transport
- Probe iono-thermo-atmosphere interactions

Ocean Reflections Too!

GNSS Ocean Reflection

- **Ocean Altimetry (topography, circulation)**
	- •Scatterometry (sea state, surface winds)
		- •Atmospheric and Ionospheric Imaging

Reflections at nadir are difficult Reflections at horizon are easy

Anatomy of a CHAMP Occultation

From Beyerle et al. (2002) **Indicates observed reflection**

NASA's BlackJack Flight Receivers

Dual stack, 4-antenna layout for Champ and SAC-C

Single stack, single antenna receiver for Jason, ICESat, VCL, and FedSat

The Next Generation?

Extended Functions

- Real-time position, velocity, attitude, and time
- Uplink reception
- **Embedded transmitter**
- On-board mass storage

Future receiver concept

- On-board spacecraft computing and control
- Science: atmosphere, ionosphere, oceans, …

International Space Station

Cellular Interferometer for Continuous Earth Remote Observation

CICERO

Tom Yunck tpy@jpl.nasa.gov