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Why is data analysis/assimilation needed?

1. Produce analysis of an incompletely sampled atmospheric
state variable

Analysis --- the best estimate of the true state of a physical
                     system at a given time and specified resolution.

2. Produce analysis of an unobserved atmospheric state variable
      from observations which are dynamically and/or physically
      related to the analysis variable

3. Produce analysis of an overly sampled atmospheric state
variable



Large-scale analysis

958
1000

After bogus data initialization 

Hurricane Bonnie (1998) at 12 UTC, 23 August 1998

TPC observed parameters:      Pc = 958 hPa, Rmax=25 km,   

                                                    Vmax=100kt, R34kt=255 km. 



Surface Wind of Hurricane Gordon at 00 UTC, 17 Sept. 2000

NCEP large-scale analysis QuikSCAT observations
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SSM/I Tbs of Hurricane Bonnie at 1200 UTC 08/23/1998
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SSM/I observationsSimulation based on 
large-scale analysis



Level-2 raw EP/TOMS ozone distribution ofLevel-2 raw EP/TOMS ozone distribution of
Hurricane Erin at 15 UTC 12 September 2001Hurricane Erin at 15 UTC 12 September 2001

(DU)



A simple function fitting interpolation example

Function fitting is probably the simplest interpolation method used to
produce analysis of incompletely sampled atmospheric state variables.

1. The analysis variable is expressed in terms of a chosen set of
expansion functions

2. Coefficients of the expansion are determined by either requiring
       the analyzed values equal to observed values at observational locations
       (an exact fit to observations) or through a least-square fit between the

analysis and observations within a chosen analysis domain
3.    The analysis variable is actually a continuous function of its spatial

coordinates and hence values of the analyzed variable can be
calculated at any specified resolution.

General procedures:



Assume there are two (K=2) zonal wind (u) observations: u1
obs and u2

obs

at two spatial locations x=x1 and x=x2 within an interval of [xa, xb],
where xa < x1 < x2 < xb. Find the analysis of u at any point within the
interval [xa, xb] through a polynomial function fitting procedure.

Problem:
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 Analysis is a weighted sum of observations.

 Weightings depend on distances between observation location and
   analysis point.

 The sum of all the weighting coefficients is equal to 1.

 Differences between analyses from different function fitting are rather
   small within two observed stations but could be very large outside the
   observed area.

 Analysis at the observation location takes observations at that point.

! 

u
a
(x) = a

0
+ a

1
x

! 

u
a
(x) = a

0
+ a

1
x
2

  

! 

u
a
(x) =

x
2

2
" x

2

x
2

2
" x

1

2

W1

1 2 3 

u
1

obs
+
x
2
" x

1

2

x
2

2
" x

1

2

W2

1 2 3 

u
2

obs

Linear fitting Quadratic fitting

Some elementary concepts:



Assume there are two (K=2) zonal wind (u) observations: u1
obs and u2

obs at
two spatial locations x=x1 and x=x2 within an interval of [xa, xb], where xa <
x1 < x2 < xb. The observational error variances are known to be      .

Consider observation error:
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What does data assimilation do?

Produce an analysis which combines information in
background field, time distributed observations and
a dynamic model.

 Observations are fitted to within (presumed) observation error.
 Background information is included.
 Observations are enough to over-determine the problem.
 Background, observational and model errors are accounted for.
 Appropriate dynamic and physical constraints are incorporated.
 Noises are suppressed.
 Analysis error statistics are known.

Important (ideal) considerations:
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Weighting function in SCs

! 

w(r) =

R
2 " r2

R
2

+ r
2

      (Cressman)

e

"
4 r

2

R
2

         (Barnes)

# 

$ 

% 
% 

& 

% 
% 

   

Weighting functions for observation increments are specified a priori as a
monotonically decreasing function of the distance between an observation
station and an analysis point:
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The successive corrections method is a local scheme. The analysis is carried
out point by point and only observations that lie within the radius of
influence (R) of the analysis grid are allowed to influence the analysis.



Remarks on SCs
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 A background field is introduced into analysis procedure.
 Observation increments are analyzed to produce analysis increments.
 Weighting functions for observation increments are specified a priori.

Advantages of SCs over function fitting:

Assumptions:
 Background errors are unbiased, uncorrelated and homogeneous. 
 Observation errors are unbiased and uncorrelated.
 Observation errors are not correlated with background errors.
 The Ki estimates,      (k=1,2,…,K),  and their error variances are crudely 
   constructed.
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Optimal Interpolation (OI)
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Covariances Involved in OI
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Observation error covariance matrix: 

Background error covariance vector: 
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 Observation increments are weighted by the inverse of the
   sum of background and observation error covariance
   matrices.
 Observations that are less accurate or are located over
   areas where the background field is less accurate are
   given smaller weights.
 This term does not depend on the position of an analysis
   grid.

About OI:



  

! 

x
i

ana = x
i

b + b
i

T
B +O( )

"1

w i

T

1 2 4 3 4 
x
obs
" x

b( )

! 

b
i

T
B +O( )

"1
x
obs
" x

b( ) :

 Information in observation increments is spread out to
   the analysis grid based on bi (the spatial structure of
   background error covariance).
 An observation at a location for which the background
   error covariance between this location and the analysis
   point is larger is given a larger weight and thus has a
   larger impact on the analysis.

.

About OI:

A larger covariance could imply higher correlation.



The OI interpolation strategy based on background error
covariance is physically sound and usually produces a
better analysis than the function fitting methods where
interpolation is determined by the structure of arbitrarily
chosen basis functions or SCs in which interpolation is done
by an empirically specified weighting function.
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Remarks on OI

 Analysis produced by OI is more accurate than that of SCs.

Advantage of OI over SCs:

Assumption:
 Observation errors are not correlated with background errors.

Common features compared to SCs:
 A background field is introduced into analysis procedure.
 Observation increments are analyzed to produce analysis increments.
 A data selection procedure is involved which determines the total number 
   of observations that will influence the analysis at a given grid. 

 The error covariances in B, O and bi must be estimated.
 The matrix B+O of order KixKi must be inverted to produce analysis at 
   every grid.

Challenges:
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Minimization of J requires the gradient value of J:
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 Knowledge of the error probability distribution function (PDF)
   enables the optimal combination of inaccurate information.

 There are not sufficient amount of observations and forecasts to
   quantify accurately these error PDFs.

 An approximation is made: PDFs are modeled (assumed) by
   multi-dimensional Gaussian distributions, which can be
   described by their mean and covariance.

 The DA problem of optimally combining new observations with
   a background field (a prior estimate of the atmospheric state)
   becomes tractable under such an approximation.

All background fields, models and observations are approximate. 

Statistical Equivalence of 3D-Var Solution (1)
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Statistical Equivalence of 3D-Var Solution (2)
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The marginal PDF of the  a posteriori state of information:

Data assimilation only derives some features of this a
posteriori PDF, such as the maximum likelihood estimate
(analysis) and the covariance matrix (analysis error
covariance) .

is the PDF of the a posteriori state of information in model space.

(The Bayes theorem)



The PDFs for the observed value yobs, the background value xb, and the
forward model y=H(x0) are all Gaussian:
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Statistical Equivalence of 3D-Var Solution (4)

Maximize
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3D-Var problem

Therefore, 3D-Var solves a general inverse problem
using maximum likelihood estimate under the
assumptions that all errors are Gaussian.



3D-Var with a Linear Forward model
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3D-Var with Linear Approximation for the Forward Model
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Information Content (1)
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A   ---  analysis error covariance matrix

||A|| ---  some norm of A

As ||A|| decreases the error decreases and ||A-1|| increases.

When the error is small, the information content is large,
the value of ||A-1|| is large.

A-1 is referred to as an information content matrix.



Information Content (2)
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About the Two Formulations of 3D-Var
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1. 3D-Var in analysis space:

2. 3D-Var in observation space:

 Advantageous when there are many observations and few gridpoints
 Constraints g(xa)=0 (geostrophy, balance eq., and suppress of fast
   gravity modes) can be imposed weakly or strongly.

 Advantageous when there are many gridpoints and few observations.
 Only weak constraints can be added by treating the constraints as extra
   observations.
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Advantages of 3D-Var over OI

 Observations that are not related directly to analysis
   variables can be more easily assimilated in 3D-Var using
   a set of general forward models

 All observations could influence the analysis at every
   gridpoint. A priori data selection is not required. The
   3D-Var analysis fields are smoother than OI analysis.

 Constraints g(xa)=0 (geostrophy, balance eq., and suppress 
   of fast gravity modes) can be imposed straightforwardly.



4D-Var and Representer Algorithms

4D-Var is the 4-D extension of the 3D-Var in analysis space.

Representer method is the 4-D extension of the 3D-Var in
observation space.

In 4D-Var or representer method, H includes both the
forecast model and the observation operator.

In 3D-Var, H includes only the observation operator.
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A Schematic Illustration of 4D-Var



Incremental 4D-Var
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4D-Var

Incremental 4D-Var

 Introduced as a cost saving method for operational implementation
   of 4D-Var

 Justified as a filter of scales and processes not well forecasted by 
   NWP models

About incremental 4D-Var: 



Advantages of 4D-Var

 Indirect observations can be easily assimilated in 4D-Var.

 All observations could influence the analysis at every gridpoint.
   A priori data selection is not required.

 Constraints g(xa)=0 can be imposed straightforwardly.

 Allows implementing a 4D covariance model.

3D-Var advantages are retained in 4D-Var. 

 Effective use of the synergistic information in sequential 
   observations (such as tracer field).



Kalman Filter (1)

--- A sequence of state vectors satisfying a forward-time-stepping 
     linear model:  

Introducing the following notation:
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--- A sequence of observation vectors satisfying the following linear 
     measurement equation:  
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--- A sequence of the true state vectors
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Kalman Filter (2)
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In KF, DA is carried out at every time step of a forward model
integration. At the nth time step,
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Kalman Filter (3)

! 

xn
ana = xn

f +K n yn
obs
"Hnxn

f( )

! 

K n = Pn
f
Hn

T
HnPn

f
Hn

T +Rn( )
"1

! 

Pn
f

=M(tn ,tn"1)A n"1M
T
(tn ,tn"1) +Qn"1

! 

xn
f

=M(tn ,tn"1)xn"1
ana

The gain matrix Kn is chosen to produce an analysis (linear
unbiased estimate) with minimum analysis error variance
under the assumption that εf and εobs are both Gaussian
white-noise sequences.

Too expensive!

Restricted to linear models
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Assumptions Used Kalman Filter
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1. The forecast model is linear and model error consists of a Gaussian 
    white-noise sequences

2. The observation operator is linear and observation error consists of 
    a Gaussian white-noise sequences

3. The KF analysis has the minimum error variance of all linear unbiased 
    estimate. 
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Approximate KFs

Extended Kalman Filter (ExKF)

Kalman Filter (KF)

Ensemble Kalman Filter (EnKF)

KF

ExKF

EnKF

For nonlinear system

Use ensemble forecast



KF ---> ExKF
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KF ---> EnKF

Use ensemble forecasts to approximately calculate the forecast
error covariance Bn required in the gain matrix Kn.
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Kalman Filter and 3D-Var
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KF:

The estimate of analysis is similar in KF and 3D-Var if xb=xf.
But in 3D-Var

 Analysis is done at a longer time interval (6 h).
 The background error covariance is not updated at every
   estimate in a DA cycle.
 Model error is not considered.



Kalman Filter and 4D-Var

Incremental 4D-Var ~ Extended Kalman Filter

 Incremental 4D-Var can be viewed as a practical
   implementation of the ExKF for a finite time window.

 The ExKF is equivalent to 4D-Var at the end of the finite
   4D-Var time window.



Practical Implementation

Practical implementation of any data assimilation algorithm requires
numerous assumptions, approximation and decisions to be made on

 Error characteristics of background, observations, and models
 Assimilation variables (“raw” observations)
 Analysis variables
 Statistical and/or dynamical balance at the scales of interest
 Incremental approach (3D-var and 4D-Var)
 Multi-processor run

It is extremely important to keep in mind all the assumptions and
approximations made in developing the data assimilation system when
interpreting results and incorporating new constraints and observations.



Forecast Covariance      (1)
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B

 Quantifying likely errors in forecasts for users.
 Determining the weights given to observations. 

How to obtain B ?
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Covariance Statistics (2)

Estimating forecast error covariance has always been a challenging problem.
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1. The matrices Bn and An are too large to evaluate.

2. The input matrices Qn are poorly known.

3. There are not enough actual forecasts and validation data.

Only some structures of Bn and An are deduced from actual forecasts
and observations based on known atmospheric dynamics and physics.

It is important to know which properties of the covariances to retain.



Covariance Statistics (3)

 Deviations of the background from radiosondes 

 Differences between lagged forecasts 

 Ensemble forecasts 
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A variable transform is used to diagonalize B so that B-1 can be evaluated.
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Determining Covariance Statistics Based on
Deviations of the Background from Radiosondes

 Background errors time-invariant, homogeneous and isentropic
 Observation errors spatially uncorrelated
 Background and observation errors uncorrelated
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Keeping the Known Dynamic Constraint  in
Forecast Covariance (1)

If the property of geostrophic balance is retained in the covariance, the
evaluation of B requires less data and the analysis increments also satisfy
the geotrophic constraint.

In the extratropics, the true and forecast atmospheres are approximately
in geostrophic balance. The errors should have the same property.
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Given observations of Φ and v at K stations, the analysis of F at the ith grid: 

where



Keeping the Known Dynamic Constraint  in
Forecast Covariance (2)

When the properties of geostrophic and hydrostatic balances are
retained in the covariance, other components, such as gravity
waves, are automatically eliminated.

In the extratropics, the true and forecast atmospheres are approximately
in geostrophic balance. The errors should have the same property.
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A Multi-Variable Correlation Example
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Forecast Error Covariance Model in 3D-Var

In 3D-Var, a variable transform is used to diagonalize B so that B-1 can
be evaluated.

Original variables x Transformed variables z

Based on dynamical, physical and mathematical
arguments, such as
 Separate balanced and unbalanced variables
 Vertical transform (e.g., EOF)
 Horizontal transform (e.g., spectral transform)

Assume that errors in  different components of the transformed variable z are
uncorrelated,  then B(z) is diagonal (but B(x) is not). Then the transformed
3D-Var problem becomes
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Implication of Incremental 4D-Var on Covariance Model
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The linear model (Mn) extends the covariance relationships to the time dimension.



SummarySummary (1) (1)

 Function Fitting

 Successive Corrections

 Optimal Interpolation

 3D-Var

 4D-Var and Incremental 4D-Var

 KF, ExKF and EnKF
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SummarySummary (2) (2)

Atmospheric data assimilation is more than an inverse
problem in statistics. Physical understanding of what are
observed and what structures are we looking for is
essential. Knowledge of the computational constraint is
also important.

Atmospheric data assimilation is a process of incorporating
various observed information into a NWP model to produce
the “best” description of the atmospheric state at desired
resolutions in a statistically “optimal” way.



Areas of Future DA Research

 Scale-dependent, weather-dependent background error statistics

 Initialization of ensemble

 Mesoscale and storm scale balances

 Model errors

 New concepts of variable phase correction, analysis of hydrometeor  
   quantities, hurricane initialization, cloud and precipitation,
   ……

 Coupled DA, climate DA

 Education

 Assimilation of new observations (GPS RO, …)


