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• Quality control

• Comparison of numerical results between bending angle 

  and local refractivity assimilation

• A non-local refractivity simulation&assimilation

• Summary



1. Excess phase: caused by the bending of the radio signal at
two frequencies: 1227.6 MHz, 1575.4 MHz.

2. Excess Doppler frequency shift: estimated by the time 
    derivative of excess phase.

3. Bending angle: derived from Doppler frequency shift based on 
    satellite geometry  (impact parameter is assumed constant at 
    GPS and LEO positions). Ionospheric effect is removed.

4. Refractivity: calculated from bending angle through the Abel 
    inversion (the refractivity is assumed spherically symmetric).

5. Temperature, water vapor and pressure: retrieved from 
    refractivity using the hydrostatic equation and large-scale
    analysis. 

GPS RO Measurements
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T$ the absolute temperature of the atmosphere (in Kelvin)

pd $ the partial pressure of the dry air # mass(in hPa)

pw $ the partial pressure of the water vapor content (in hPa)



GPS RO Data Processing Chain (1)
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GPS RO Data Processing Chain (2)
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GPS RO Data Processing Chain (3)
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Some Unique Features of GPS RO Observations

 Indirect measurements of atmospheric thermodynamic state

 Very high vertical resolution

 A RO can occur at any geographical location, providing a vertica 
   profile of measurements from the top of the atmosphere to certain
   height in the low troposphere

 No calibration error          Long-term stability  

  Available in all weather conditions

  Global, all time coverage

  Independent to other remote-sensing systems, such as infrared and 
   microwave sounding techniques

 Not a point measurement



Outliers

Part I: A Quality Control Procedure for GPS RO Data

Erroneous data

Data deviate greatly from background

! 

{

The purpose of QC is to remove erroneous data.



Error sourcesError sources

 Local multi-path

 Position errorsSystematic 
errors  Velocity errors

 Retrieval errors

! 

{
Ionosphere calibration errors

Upper altitude boundary errors

Errors introduced by the spherical 
symmetry assumption

Errors induced by atmospheric 
multi-path

! 

{Retrieval errors



   Test Case: CHAMP RO Data Are Used for a QC test

UCAR
CDAAC

One month
(March 2004)

0 ~ 20 km α & N

Data
source

Temporal
range

Height
range

RO retrievals

6169 ROs received totally

4884 α and N profiles retrieved

4514 profiles passed CDAAC QC



•       < 1 km          ∗    1 ~ 2 km
    2 ~ 4 km          Δ    4 ~ 6 km               �     > 6 km

Histogram of the
number of RO events

Geographical distribution of the 4884 ROs in March 2004



 Data points with negative values:

                              or

 are removed.
0! < 0N <

QC1 --- range check:

Ionospheric residual in the inverse of upper troposphere.



The biweight estimate is a weighted average such that weighting
decreases away from the center of the distribution. All values beyond
a certain critical distance from the center (controlled by a parameter
“c”) are given zero weight.

34340.292.85Maximum Z-score

0.03315.90Standard deviation

1.05100.95Mean

BiweightTraditional

Sample:   X = [1.01, 1.02, …, 1.09, 1000]

Biweight Mean and Standard Deviation (1)
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1) Estimate the median (M) and median absolute deviation (MAD).

2) Calculate the weight (wi) corresponding to each of the n observations (Xi).

3) Estimate the biweight mean and biweight standard deviation.



QC2 --- A Horizontal Spatial Consistency Check

Flag values outside of a confidence interval about the
mean using a range of ±3, ±4, ±5 times the standard
deviation:
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Global

Low Lat

Mid Lat

High Lat

Biweight Mean and Standard Deviation of α and N

Mean(α) STD(α)

Mean(N) STD(Ν)

No. of obs.



Z>5 Z>4 Z>3

α

N

Outliers Identified by QC2 under different Z Scores



4.4%3.1%2.6%α∪Ν

3.7%2.9%2.5%Ν

2.2%1.4%1.1%α

Z > 3Z > 4Z > 5Outliers (%)

Percentages of Erroneous Data Points Suspected by QC2



QC3 --- A Consistent Check with NCEP Analysis
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QC4 --- A Asymmetry Check

Remove the negative bias of occultation observation in the
lower troposphere

Asymmetry check procedure (Lanzante, 1996):

1) estimated the median (M) of the sample;

2) divide the total data sample into two groups according to the
sign of data difference from the median: XL denotes all data
points less than M and XG is all data points greater than the M;

3) Transform XL data into a new group Y by reflecting them
across the median:           Y = M + (M-XL);

4) XL and Y represent a new symmetry sample; XG and its
reflecting part form another symmetry sample in the same way



 After  QC4

Before QC4
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QC4
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Variance Values Before and After QC

High LatMid LatLow LatGlobal

 Before QCCDAAC QCAfter QC



Vertical Correlations

Δα

ΔΝ

Before QC After QC



Histograms of the Differences between
CHAMP Retrievals and NCEP Analysis

No QC
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Proposed QC
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An effort to assess the need to incorporate a 
non-local refractivity assimilation scheme

Part II: Comparing GPS RO Bending Angle 
             and  Local  Refractivity  Assimilation

Three sets of data assimilation experiments were carried 
out, incorporating CHAMP RO data that occurred during
21-31 May, 2002:  
     1) NOGPS: All observations without GPS RO data
     2) BA: All observations & CHAMP bending angle data 
     2) REF: All observations & CHAMP refractivity data



Cost function for assimilation of α or Ν
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Gradients for Assimilation of α and NGPS
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Hα --- A Ray-Tracing Model

The GPS bending angle is derived through an integration 
of the following ray equation
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refractive index, and x
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is the Cartesian coordinate vector.
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Part III: A Non-Local Refractivity Simulation&Assimilation

Along a straight line (m) tangent to the observed ray, the 
following relationship holds true:
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A Non-local Refractivity Simulation&Assimilation

Along a straight line (m) tangent to the observed ray, the 
following relationship holds true:
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Latitudinal dependence of the kernal function



Kernal function
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Kernel function using NCEP grid (T170L42)
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Global Distributions of 4240 CHAMP ROs in May 2002
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Mid-latitude Cumulus:      (273ºE, 33ºN), 0633 UTC 31 May 2002

Mid-lat. Convective:          (274ºE, 34ºN), 0645 UTC 29 May 2002

Location of Two Collocated CHAMP ROs within Cloud Systems
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Distributions of 8 Selected CHAMP ROs during
a 6-h Time Window (03-09 UTC 31 May 2002)
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Differences between Non-Local and Local Refractivity Assimilation
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1. Outliers are identified based on a biweight estimate applied sequentially
to GPS retrievals themselves and then to deviations of GPS retrievals
from the NCEP analyses.

2. A range check and a symmetric check are incorporated, removing the
negative bias near the surface.

3. After QC, GPS RO data show a more coherent pattern compared with
NCEP analyses, a more symmetric distribution of a probability density
function, much reduced variance in upper levels, and a nearly diagonal
vertical correlation distribution at all heights.

4. Although the proposed QC involves very little physical considerations, it
is shown that most RO profiles removed by our QC are also identified as
of bad quality based on the values of the RO characteristic parameters.

5. Compared with CDAAC’s QC, our QC checks RO observations
separately at different height levels, but not simply removes either the
entire profile or nothing at all based on each RO’s characteristic
parameters.

Summary for Part I 
(Quality Control)



Summary for Part II 
(Assimilation of α versus Nloc)

 Differences in analyses resulting from assimilating bending angle
   and local refractivity are weather-dependent. Large mean
   differences are found at the cloud height for specific humidity and
   near and above the tropopause for temperature.

 Assimilation of bending angle through a ray-tracing technique results 
   a large influence radius than the local refractivity assimilation.

 Assimilation of bending angle results in a better fit of model to GPS 
   refractivity than the local refractivity assimilation in terms of the mean
   standard deviation.



Summary of Part III
(A Non-Local Refractivity Assimilation)

 The kernel function distribution depends on model resolution, vertical 
   resolution of observations, and geographic location of ROs. 

 Preliminary results on 8 selected CHAMP ROs suggest that a more 
   significant difference between local and non-local GPS data assimilation
   results in Southern Hemisphere than in Northern Hemisphere. 

 Differences between non-local and local refractivity are largest in the 
   tropics than middle and high latitudes. In the vertical, large differences
   are found in the low troposphere and stratosphere.



Ongoing Work

 Test QC impact on GPS RO data assimilation results.

 Continue GPS non-local refractivity assimilation research:

 Where and when is a non-local refractivity

     assimilation needed?

Assess impact of local and non-local refractivity

   assimilation on both global and mesoscale analyses
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