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Motivation

* GNSS Radio Occultation (RO) measurements provide a stable reference for use in numerical weather
grediction (NWP) and anchor dataset to perform bias correction for other types of atmospheric sounding
ata

* Hyperspectral radiometric sounders, like CrIS (Cross-track Infrared Sounder) also serve as on-orbit calibration
re\l;\?rence standards for other broad- or narrow-band infrared (IR) observations as well as contributing to
NWP

* Both are accurate, stable, and based on Sl traceable standards (Atomic Frequency Standard vs. Radiance
respectively)

* In this study, GNSS RO data from COSMIC, KOMPSAT-5, and the MetOp-A and B GRAS instruments provide
high resolution grofiles of atmospheric variables that are used as a reference to validate the brightness
temperatures observed by IR sounders.

* In addition, intercomparisons between IR sounds are also used to validate.



Approach

* Assess the radiometric consistency of two
hyperspectral IR sounders:

* The Cross-track Infrared Sounder (CrIS) onboard Suomi-NPP
before and after the switch to the redundant electronics

* The Infrared Atmosi)heric Sounding Interferometer (IASI)
onboard the recently launched MetOp-C compared to the
IASI instrument on MetOp-B

e Two methods:

1. Comparison between observed brightness temperatures
and simulated brightness temperatures from a radiative
transfer model with RO data providing the temperature
and water vapor inputs

2. Comparison to other well calibrated hyperspectral IR
sounders during Simultaneous Nadir Overpasses (SNO)
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CRTM Based Intercompari;on

Condition Criteria
Match IR FOVs with -
e Radio Occultation wetPrf data from CDAAC RO Profiles Distance <200 km
e COSMIC Time difference <3 hours
e KOMPSAT-5 \ Surface Over ocean )
* MetOp-A and —B GRAS *
/ CRTM v2.3.0 \
. . . Inputs from RO retrievals Inputs from ECMWF Reanalysis Inputs from IR data
* Each RO profile is collocated with a single — . v o
clear sky FOV over ocean. Cloud cover P urface wind speed and longitude
assessed using ECMWF reanalysis cloud Water Vapor Pressure rection o
cover and threshold cutoff for biases in Pressure Ozone profile savellte azimuth and
surface channels. Skin Temperature ;
Solar azimuth and zenith
angles
 Community Radiative Transfer Model 4
(CRTM) v2.3.0 dEVE|OpEd by JCSDA used. K [ Simulated brightness temperatures ] /

¥

Brightness temperature mean bias
* Compute the bias in BT for each FOV pair

* Average over FOV pairs from all SNOs




SNO Based Intercomparis

SNO opportunities with <2 min
separation nadir overpasses
occur every ~50 days between
Metop-B and S-NPP and last for
~2 days with ~48 SNOs during
that period

Overlapping pairs of CrlIS and
|IASI FOVs are found. Only
homogeneous scenes are
considered to minimize
collocation errors.

IASI has higher spectral
resolution and no gaps
between bands. IASI spectra
can be deconvolved to match
the CrlS spectral grid and make
a direct comparison.
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Match CrlIS FOVs
with
IASI FOVs

Condition Criteria
FOV distance <13 km
Time difference <3 min

View angle abs(cos(zen_cris)-cos(zen_iasi)) < 0.01

difference

Mean(Stdev(CrIS FOVs in FOR)/Mean(CrIS
FOVs in FOR)) < 50% /

Homogeneity
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|ASI-to-CrlIS

Deconvolution

Remove Gaussian apodization \

A 4

Inverse Fourier Transform to interferogram

$

Truncate to CrIS OPD

$

Fourier Transform to CrlS spectrum

\ ¢
Apply Hamming apodization /

v

BT
mean bias

Compute the bias in BT for each FOV pair

Average over FOV pairs from all SNOs



Challenges

* Viewing geometry: Limb vs. nadir

* Time difference

* Colocation uncertainties

e Sample limitations in RO

* Errors in the RO temperature and vapor pressure retrievals

* Errors introduced by the radiative transfer model

* RO uncertainties in the upper atmosphere due to small bending angle

* Low troposphere uncertainties due to water vapor SNR, and turbulence
* Infrared sounding limited to clear sky conditions (clouds)

* SNOs occur relatively infrequently — every ~50 days



Suomi-NPP CrlS Side-1 vs Side-2

Assess the radiometric consistency of S-NPP CrlS Side-2 compared to Side-1
using transfer targets:

1. Simulated CRTM brightness temperatures with RO inputs

2. SNOs with MetOp-B IASI



Suomi-NPP CrlS Midwave Band Recovery

FOV-to-FOV Radiometric Consistency

On March 23, 2019, an anomaly resulted in the loss of the Midwave Ifrared
(MWIR) band in the S-NPP CrlS raw data record (RDR) interferograms.

The root cause was likely a failure in the MW signal processor field
programmable gate array and surrounding circuitry.

To recover the missing band, a switch to the redundant side electronics was
made on June 24, 2019.

The redundant electronics replace several existing instrument components
with a different version, including temperature sensors required for
radiometric calibration.

The redundant electronic were characterized pre-launch and little change to
the spectral and radiometric performance of the instrument was expected.

Following an update to the calibration parameters improving the geoloction
g(c)clugracy, S-NPP CrlIS SDR product reached provisional maturity on August 1,

To compare the Side-1 sensor data record (SDR) product to Side-2, data
from August 2018 and August 2019 will be used.
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S-NPP CrlIS Side-1 vs Side-2 Intercomparison
CRTM BT with RO Input as Transfer Target

Mean Bias: (BT, — BTrw)

[ ] g 2 T
v 1F .
B
1 8o -
c
| T |
=2
O-B Bias Double \ O-B Bias Standard Deviation
Difference v 10 Met(l)p-B ' ' '
[ ] = ||—s-NpP Cris Side-1 (N=258) |
O 5 []—S-NPP CrIS Side-2 (N=248) .
s -
S-NPP Side 1: August 2018 n 0 ‘*L\.»“«mwww lWAMMWMNW
S-NPP Side 2: August 2019 o Double Difference: (BT, — BTcrrm)side-2 = (BTons = BTcrtv) side-1
I I I I I
e 10 N
Small negative bias in the LW window channels Q oL WMWMWWWWWM |
consistent and ~1 K positive bias in the water vapor 3 W
channels of the midwave are both consistent with 3 - ]
CRTM simulated BT. a .2 : : : : :
o ) 600 800 1000 1200 1400 1600 1800
The larger bias in the midwave suggests there may be -1
errors in the moisture variables input to the CRTM. Wavenumber (cm ')

Double difference shows nearly all LW channels within
0.1 K and nearly all MW channels within 0.25 K.



S-NPP CrlS Side-1 vs Side-2 Intercomparison

All missions show large
positive biases in the
MW.

For aging missions,
counts between years
are inconsistent.

Low counts in 2019
compared to 2018 could
cause differences in MW
biases.

MetOp GRAS both show
consistency between
¥ears despite low counts

or MetOp-A GRAS in
20109.
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S-NPP CrlIS Side-1 vs Side-2 Intercomparison
|IASI-B SNOs as Transfer Target
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MetOp-C [ASI

Assess the radiometric consistency of MetOp-C IASI compared to MetOp-B IASI
using transfer targets:

1. Simulated CRTM brightness temperatures with RO inputs
2. SNOs with S-NPP CrlIS



MetOp-C IASI vs MetOp-B IAS| Intercomparison
CRTM BT with RO Input as Transfer Target
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MetOp-C IASI vs MetOp-B IAS| Intercomparison
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MetOp-C IASI vs MetOp-B IAS| Intercomparison
S-NPP CrIS SNOs as Transfer Target
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Summary of Results

MetOp-C IASI
» Shows excellent agreement with MetOp-B IASI
* Intercomparison with CRTM simulated BT with

Suomi NPP CrlS Side-2
* Shows excellent agreement with S-NPP CrIS Side-1

* Intercomparison with CRTM simulated BT with MetOp-B GRAS profiles as input:
MetOp-B GRAS profiles as input: . 0p1 K in LW P P
* 0.1KinlLW . O:5Kin MW

* 0.25Kin MW

* Intercomparison with MetOp-B IASI SNOs:
e Within 0.05 K in the LW and MW.
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Conclusions

* Intercomparisons between IR sounders using simultaneous nadir overpasses
(SNOs) is a well established method. The method demonstrates excellent
consistency between S-NPP CrlS Side-2 and Side-1 and between the IASI
instruments on MetOp-C and MetOp-B.

* Intercomparisons between observed brightness temperatures and simulated
brightness temperatures using a radiative transfer model such as the CRTM are
also well established. This method introduces some uncertainty from the
radiative transfer model itself.

* GNSS-RO measurements provide high resolution retrieved temperature and
moisture profiles. These data can serve as inputs to a radiative transfer model for
intercomparisons; however additional uncertainties are introduced due to the
matchup criteria and potential errors in the retrievals.



