# $Id: $ #****c* Configuration Files/cosmic_pp.cf * # # NAME # cosmic_pp.cf - COSMIC data configuration file for pre-processor # implementations in ROPP # # SYNOPSIS # ... -c cosmic_pp.cf ... # # DESCRIPTION # This file reflects the configuration for the PP # implementations within ROPP suitable for use with COSMIC data. # # NOTES # # AUTHOR # Met Office, Exeter, UK. # Any comments on this software should be given via the ROM SAF # Helpdesk at http://www.romsaf.org # # COPYRIGHT # (c) EUMETSAT. All rights reserved. # For further details please refer to the file COPYRIGHT # which you should have received as part of this distribution. # #**** #------------------------------------------------------------------------------- # 0. Output options #------------------------------------------------------------------------------- output_lev1a = .true. ! Flag to output (modified) level 1a data output_lev1b = .true. ! Flag to output level 1b data output_lev2a = .true. ! Flag to output level 2a data output_diag = .true. ! Flag to output additional diagnostics #------------------------------------------------------------------------------- # 1. Excess phase to bending angle processing #------------------------------------------------------------------------------- # 1.1 Occultation processing method # --------------------------------- # GO - use GEOMETRIC OPTICS processing to derive bending angle as a function of # impact parameter from excess phase as a function of time. # WO - use WAVE OPTICS (CT2 algorithm) processing to derive bending angle as a # function of impact parameter from excess phase as a function of time. occ_method = WO # 1.2 Filtering method # -------------------- # optest - use OPTIMAL ESTIMATION: solution of integral equation # slpoly - use SLIDING POLYNOMIAL filter_method = slpoly # 1.3 Smoothing bending angle profile # ----------------------------------- fw_go_smooth = 3000.0 # Filter width for smoothed GO bending angles (m) fw_go_full = 3000.0 # Filter width for full resolution GO bending angles (m) fw_wo = 2000.0 # Filter width for wave optics bending angle above 7 km(m) fw_low = -1000.0 # Filter width for wave optics bending angle below 7 km (m) # 1.4 Maximum height for wave optics processing # --------------------------------------------- hmax_wo = 25000.0 # Maximum height for wave optics processing (m) # 1.5 Data cut-off limits # ----------------------- Acut = 0.0 # Fractional cut-off limit for amplitude Pcut = -2000.0 # Cut-off limit for impact height Bcut = 0.1 # Cut-off limit for bending angle Hcut = -250000.0 # Cut-off limit for straight-line tangent altitude # 1.6 CT2 options # --------------- CFF = 3 # Complex field filter flag (CFF = 'Pa') dsh = 200.0 # Shadow border width (m) # 1.7 Degraded L2 data flag # ------------------------- opt_DL2 = .true. # 1.8 Compute and output spectra flag # ----------------------------------- opt_spectra = .false. # 1.9 Paths to EGM96 geoid model coefficients and corrections file # ---------------------------------------------------------------- egm96 = ./data/egm96.dat # EGM96 coefficients file corr_egm96 = ./data/corrcoef.dat # Correction coefficients file #------------------------------------------------------------------------------- # 1. Ionospheric correction processing #------------------------------------------------------------------------------- # 1.1 Ionospheric correction method # --------------------------------- # GMSIS - use MSIS climatology bending angle (searching global MSIS profiles # for best fit profile to obs) in ionospheric correction, # statistical optimization and bending angle to refractivity inversion. # # MSIS - use MSIS climatology bending angle in ionospheric correction, # statistical optimization and bending angle to refractivity inversion. # # GBARO - use BAROCLIM bending angle (searching global BAROCLIM profiles # for best fit profile to obs) in ionospheric correction, # statistical optimization and bending angle to refractivity inversion. # # BARO - use BAROCLIM bending angle in ionospheric correction, # statistical optimization and bending angle to refractivity inversion. # # BG - use climatology from a specified input file containing # background temperature, pressure and humidity # (e.g. from an NWP analysis). The input filename can be specified # using the '-bfile' command line argument or setting 'bfile' (see 1.5). # # NONE - linear combination of L1 and L2 bending angles in ionospheric # correction, no additional information above observed profile top # in the inverse Abel to compute refractivity. method = GMSIS # Ionospheric correction method # 1.2 Abel integral method # ------------------------ # LIN - assume linear variation of bending angle and ln(n) between # observation levels. This algorithm is used in ROM SAF NRT processing # # EXP - assume exponential variation of bending angle and ln(n) between # observation levels. This algorithm is used in ropp_fm module. abel = LIN # 1.3 Statistical optimisation method # ----------------------------------- # SO - statistical optimisation. # LCSO - linear combination plus statistical optimisation. so_method = so # 1.4 Climatology model coefficients files # -------------------------------- msisfile = MSIS_coeff.nc # MSIS model coefficients file mfile = MSIS_coeff.nc # Model coefficients file for stat.opt. # 1.5 Background model temperature, humidity, pressure file # --------------------------------------------------------- bfile = BG_file.nc # Background meteorology profile file (method=BG) #------------------------------------------------------------------------------- # 2. Impact parameter grid #------------------------------------------------------------------------------- # The ionospheric correction interpolates L1 and L2 bending angle profiles onto a # standard grid. dpi = 100.0 # Step of standard impact parameter grid (m) #------------------------------------------------------------------------------- # 3. Smoothing bending angle profile #------------------------------------------------------------------------------- # A smoothed bending angle profile is derived compute the fit of observed bending # angles to the model bending angle profile. np_smooth = 3 # Polynomial degree for smoothing regression fw_smooth = 2000.0 # Filter width for smoothing profile #------------------------------------------------------------------------------- # 4. Model bending angle profile fit to observations #------------------------------------------------------------------------------- # To avoid systematic deviations from the observed profile with climatology, # the model profile is scaled to the observed profile by a fitting method. sf_method = parallel # Search and fit method (parallel or serial) nparm_fit = 2 # Number of parameters for model fit regression hmin_fit = 20000.0 # Lower limit for model fit regression hmax_fit = 70000.0 # Upper limit for model fit regression omega_fit = 0.3 # A priori standard deviation of regression factor #------------------------------------------------------------------------------- # 5. Ionospheric correction and statistical optimization #------------------------------------------------------------------------------- # The method described by Gorbunov (2002) is implemented to perform ionospheric # correction with statistical optimization. f_width = 2000.0 # Ionospheric correction filter width delta_p = 20.0 # Step of homogeneous impact parameter grid s_smooth = 2000.0 # External ionospheric smoothing scale z_ion = 50000.0 # Lower height limit of ionospheric signal z_str = 35000.0 # Lower height limit of stratospheric signal z_ltr = 12000.0 # Lower height limit of tropospheric signal n_smooth = 11 # Number of points for smoothing (must be odd) model_err = -0.5 # A priori model error std.dev. (dyn.est. if negative) #------------------------------------------------------------------------------- # 6. Bending angle inversion to refractivity #------------------------------------------------------------------------------- # The Abel inversion is computed to retrieve refractivity from corrected # bending angles. The corrected bending angle profile is extended # using MSIS or BAROCLIM data above the observed profile top. ztop_invert = 150000.0 # Height of atmosphere top for inversion dzh_invert = 50.0 # Step of inversion grid above observation top dzr_invert = 20000.0 # Interval for regression in inversion