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Compared with the Algorithm Theoretical Basis Document (ATBD) for the STAR RO 1D-VAR 
algorithm V.1.0, Section 6 is added in this document to describe features of version 3.2. The rest 
of the document is almost identical to ATBD for V.1.0.  
 
1. Introduction 
 
The active global navigation satellite system (GNSS) radio occultation (RO) remote sensing 
technology can detect the vertical distribution of density variation. In the neutral atmosphere, the 
refractivity is a function of atmospheric pressure, temperature, and moisture [1-4]. With an optimal 
inversion algorithm and a priori atmospheric thermal information, the refractivity profiles can be 
inverted into temperature and water vapor profiles [5,6]. Numerous studies [7-27] have 
demonstrated the RO-derived water vapor profiles in the neutral atmosphere are complemented 
with those from satellite infrared (IR) and microwave (MW) sounders and provide water vapor 
information within and below clouds.   

This ATBD aims to describe the one-dimension variational inversion algorithm (1D-VAR) to 
derive neutral atmospheric temperature and moisture profiles [28] developed by the NOAA Center 
for Satellite Applications and Research (STAR) GNSS RO data processing and science center 
(https://www.star.nesdis.noaa.gov/smcd/gnssro/RO/index.php). The input refractivity for the 
STAR 1D-VAR is from RO atmPrf files. Currently, we use RO atmPrf refractivity profiles from 
the UCAR COSMIC Data Analysis and Archive Center (UCAR/CDAAC) at https://cdaac-www. 
Cosmic.ucar.edu/cdaac/index.html). In the future, we could use RO atmPrf files generated by the 
STAR GNSS RO team. The CDAAC implementation procedures for converting the COSMIC-2 
raw measurements to bending angle and refractivity profiles are detailed at https://cdaac-
www.cosmic.ucar.edu/cdaac/doc/ documents/Sokolovskiy_newroam.pdf and are not further 
described in this document. Description of the STAR 1D-VAR inversion approaches, pre-defined 
background covariance matrix and error covariance matrix, and initial validation are detailed in 
[28] and are also summarized below. 

2. Dry and Wet Retrieval 
 
In a neutral atmosphere, the refractivity (𝑁𝑁) profile is a function of pressure (𝑃𝑃), temperature (𝑇𝑇), 
and the partial pressure of water vapor (𝑃𝑃𝑊𝑊) [2]: 
 

𝑁𝑁 = 77.6 𝑃𝑃
𝑇𝑇

+ 3.73 ∙ 10−5 𝑃𝑃𝑊𝑊
𝑇𝑇2

                                                       (1) 
 

https://www.star.nesdis.noaa.gov/smcd/gnssro/RO/index.php
https://cdaac-www/


 
 

2 

The units for 𝑃𝑃, 𝑇𝑇, and 𝑃𝑃𝑊𝑊 are mbar, Kelvin, and mbar, respectively. Refractivity is in N-units: 
𝑁𝑁(𝑧𝑧) = 106(𝑛𝑛(𝑧𝑧) − 1), where 𝑛𝑛(𝑧𝑧) is an index of refraction. 
 
The refractivity information is contributed by temperature and moisture in the troposphere, where 
moisture is the dominant contributor (below 6-8 km altitude, depending on latitude and season of 
observation). In the upper troposphere and above, where the moisture is negligible, refractivity 
information mainly comes from the temperature.  
 
Final pressure, temperature, and water vapor profiles are combinations of profiles obtained with 
“dry” and “wet” retrievals. Dry retrieval is applied for the upper portion of profiles where the 
contribution of the water vapor (second term in Equation (1)) into refractivity is negligible and can 
be omitted. Here, we use the dry hydrostatic equation and Equation (1) (with the second term 
removed) to solve the dry temperature and dry pressure (two equations to solve for two unknowns 
– a well-posed problem). The derived dry pressure and temperature shall be very close to the actual 
ones. 
 
We use “wet” retrieval in the troposphere because the water vapor cannot be negligible. However, 
since we only have one observable (N) and two unknown, temperature and water vapor, the 
inversion becomes an ill-posed problem. We use the maximum likelihood method (the optimal 
estimator) introduced by [29] to retrieve temperature and water vapor from refractivity at specific 
altitudes. For a given RO refractivity value (the “observation”) at a particular height 𝑧𝑧 (i.e., 𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑁𝑁(𝑧𝑧)), the optimal estimation equation is 
 

𝑋𝑋𝑗𝑗+1 = 𝑋𝑋0 + �𝐾𝐾𝑗𝑗𝑇𝑇𝐸𝐸−1𝐾𝐾𝑗𝑗 + 𝐵𝐵−1�
−1

× 𝐾𝐾𝑗𝑗𝑇𝑇𝐸𝐸−1��𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑌𝑌(𝑋𝑋𝑗𝑗)� + 𝐾𝐾𝑗𝑗�𝑋𝑋𝑗𝑗 − 𝑋𝑋0��,            (2) 
 

where 𝑋𝑋0 = �𝑇𝑇0,𝑃𝑃𝑊𝑊0� is the first guess, 𝐾𝐾 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑊𝑊

� is a Jacobian vector, 𝐵𝐵 is the a priori 
background state covariance matrix, and 𝐸𝐸 represents the combined instrument noise and the 
forward model-error covariance matrix. 
 
Note that the retrieval vector 𝑋𝑋𝑗𝑗 includes only temperature and water vapor, and the optimal 
estimator runs for each altitude separately, level by level, from the prescribed top of atmosphere 
(TOA) altitude to the bottom of the profile. The pressure profile requires integration from the TOA 
to the current altitude. The procedure to obtain a pressure profile is described separately in Section 
4.  
 
The index 𝑗𝑗 in Equation 2 corresponds to the iteration number. The iteration procedures continue 
until the residual difference between the observed input refractivity and forward simulated 
refractivity (computed from Equation (1) using the retrieved temperature and water vapor as 
inputs) satisfies the condition 
 

�
𝑁𝑁𝑂𝑂𝐵𝐵𝑂𝑂−𝑁𝑁𝑗𝑗
𝑁𝑁𝑂𝑂𝐵𝐵𝑂𝑂

� < 0.001 (i.e., 0.1%) 
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A parameter 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ is used to define the altitude where the switching from “dry” (for 𝑧𝑧 > 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ) 
to “wet” (for 𝑧𝑧 < 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ)  retrieval happens. In Version 1.0, 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 40 𝑘𝑘𝑘𝑘. The following 
sections describe each step of the algorithm in detail. 
 
3. Detailed Algorithm Description 
 
3.1 The Algorithm Initialization 
 
The algorithm initialization includes the following steps (also see [28]): 

● Loading of the pre-computed background covariance matrix and error covariance matrix 
(used in optimal estimator); 

● Loading of the First Guess (used in optimal estimator); 
● Loading of the ocean/land mask (0.25o latitude/longitude resolution; used only for 

transferring to the output). 
 

3.2 Pre-Computed Background Covariance Matrix and Error Covariance Matrix 
 
The background covariance matrix B and the error covariance matrix E in Equation (2) must first 
be defined to run the optimal estimator. We used the NOAA Global Forecasting System 6 Hours 
Forecast (GFS-6hF) from 2018 to estimate the background covariance matrix. To take the seasonal 
and latitude variability of the Earth’s atmosphere into account, we evaluated B and E for seven 
latitude zones (two polar zones 90oN to 60oN and 60oS to 90oS; four mid-latitude zones 60oN to 
45oN, 45oN to 20oN, 20oS to 45oS, and 45oS to 60oS; and one tropical zone 20oN to 20oS) for each 
month of the year. 
 
We have 84 (7×12) estimated background states from monthly mean profiles and standard 
deviation for atmospheric temperature and water vapor. Figures 1 and 2 present monthly standard 
deviations for water vapor partial pressure and temperature, which are used to define matrix B. In 
the covariance matrix B, the diagonal elements are equal to the square of the corresponding 
standard deviation, while the off-diagonal elements are all zero. Averaging has been performed 
for each month and in seven latitude zones separately. Only three latitude zones in the 45oN to 
45oS range are shown since this is where COSMIC-2 measurements are located. Figures 1 and 2 
show the atmospheric state's latitudinal and seasonal dependence, with the seasonal variability 
most vital in mid-latitudes and weakest in the tropics. 
 
We applied the same year-long set of GFS background states to derive the set of simulated 
refractivity 𝑁𝑁 by using a RO forward model (Equation 1). The current algorithm uses the error 
covariance matrix E to stabilize the optimal estimator (see Equation 2). Similar to the covariance 
matrix B, the error covariance matrix E has zero off-diagonal elements, and diagonal elements are 
proportional to the variance of 𝑁𝑁 obtained for each month and each latitude zone: 
 

𝐸𝐸𝑠𝑠𝑗𝑗 = {𝛾𝛾𝜕𝜕𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁 × 𝜎𝜎(𝑁𝑁𝑠𝑠)}2 , 𝑖𝑖 = 𝑗𝑗 
 

𝐸𝐸𝑠𝑠𝑗𝑗 = 0 , 𝑖𝑖 ≠ 𝑗𝑗 
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The 𝛾𝛾𝜕𝜕𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁 is a scaling factor, and we define 𝛾𝛾𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁𝑁𝑁=0.1 to stabilize the matrix inversion and 
optimally use refractivity information in the retrieval. Our sensitivity study indicates that small 
𝛾𝛾𝜕𝜕𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁 leads to the instability of inversion, while high 𝛾𝛾𝜕𝜕𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁 results in retrievals being close to the 
first guess and losing information obtained from measurements. This ensures the retrievals fit more 
to the observed refractivity than the first guess. Note that the error covariance described here does 
not reflect the combined error from the forward model and receiver but is designed to weight 
information obtained from the observation and first guess optimally. 

 
Figure 1. Background standard deviation of water vapor used in the optimal estimation: (a) northern mid-latitudes 
45oN to 20oN, (b) tropics 20oN to 20oS, (c) southern mid-latitudes 20oS to 45oS. Each panel presents 12 months where 
blue lines are for northern winter (December, January, and February), green lines are for northern spring (March, 
April, and May), red lines are for northern summer (June, July, and August), and yellow lines are for northern autumn 
(September, October, and November). 
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Figure 2. The same as Figure 1 but for background temperature standard deviation. 
 
Figure 3 shows the error covariance model used in the optimal estimations from 45oN to 45oS 
range. The estimated monthly errors are below 1% relative to the expected observed refractivity 
in all latitude zones below 16 km altitude. 

 
Figure 3. The error covariance model (in % to zonal monthly mean refractivity) used in the optimal estimation: (a) 
northern mid-latitudes 45oN to 20oN, (b) tropics 20oN to 20oS, (c) southern mid-latitudes 20oS to 45oS. Each panel 
presents 12 months where blue lines are for northern winter (December, January, and February), green lines are for 
northern spring (March, April, and May), red lines are for northern summer (June, July, and August), and yellow lines 
are for northern autumn (September, October, and November). 
 
3.3 The First Guess 
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In Version 1.0, the four-dimensional (latitude, longitude, fixed pressure levels, and time) global 
fields of the atmospheric temperature and water vapor are downloaded from the NOAA National 
Centers for Environment Information GFS website https://www.ncdc.noaa.gov/data-
access/model-data/model-datasets/global-forcast-system-gfs. We use the NOAA Global Forecast 
(GFS) system data six hours forecast interpolated onto the RO locations and time as the a priori 
(first guess) atmospheric state (vector 𝑋𝑋0 in Equation (2)) to initialize the optimal estimation 
retrievals. We use GFS 1ox1o latitude/longitude grid data. For a given day of observation, we have 
forecasts for 0:00, 6:00, 12:00, 18:00, and 24:00 UTC. The GFS fixed pressure levels grid varies 
depending on the time of interest (from 26 levels for the year of 2005 to 41 levels starting from 
the year of 2021) and includes pressure ranges from 1000 mbar to 1 mbar (in 2005) or 0.01 mbar 
(in 2021). 
 
For a given RO profile, we first find the closest GFS profile location based on the nominal 
latitude/longitude from the RO profile, and two GFS forecast profiles are picked based on RO 
observation time, one before and one after the observation time. Then, we averaged these two 
profiles with weights proportional to the time difference between forecast time and the actual RO 
observation. Weighted profiles are lastly interpolated to the altitude grid of the input RO 
observation. 
 
Starting from the NOAA/STAR GNSS RO 1D-VAR Version 3.2 package, we also support the 
ECMWF ERA5 six-hour forecast as the first guess. More details on using ERA5 can be found in 
Section 6.1 of this document.  
 
3.4 The Main Input and Output 
 
The STAR GNSS RO 1D-VAR package is designed to run daily as a post-processing mode. The 
daily limitation is caused by the need to load the first guess, which takes a large volume of the 
computer's memory. Currently, we use UCAR atmPrf files (NetCDF format) to obtain input 
refractivity profiles. Full-length profiles of latitude and longitude and some other variables from 
atmPrf files are loaded for transferring to the main output file only (see Appendix A). Besides 
𝑁𝑁(𝑧𝑧), the STAR GNSS RO 1D-VAR also uses impact height and altitude, the Earth's local 
curvature radius, nominal coordinates (latitude and longitude), and time of the RO observation 
from UCAR atmPrf files. 
 
Input UCAR atmPrf profiles usually begin from ~60 km of altitude to the surface with ~20 m 
vertical resolution. The bottom altitude depends on the penetration depth achieved in the particular 
RO event and varies on average from 3 km to 0 km (the latter is less than 10% of the total number 
of profiles). The STAR GNSS RO 1D-VAR retrieval is performed on the input atmPrf altitude 
grid, i.e., with ~20 m vertical resolution. When the particular profile is finished, the output profile 
is thinned to the fixed altitude grid similar to UCAR wetPf2, which is from 0 km (if available) to 
20 km with a vertical resolution of 50 m and from 20 km to 60 km with a vertical resolution of 
100 m. Thinning is performed as a linear interpolation by altitude.  
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The main output of the STAR GNSS RO 1D-VAR package is one file per RO event in NetCDF 
format, close to the one used in UCAR RO wetPrf and wetPf2 files. Appendix A provides a 
detailed description of the content and file name convention for the STAR wetPrf files. 
 
4. Pressure Integration 
 
4.1 Dry Pressure and Dry Temperature 
 
Starting from the observed refractivity profile 𝑁𝑁(𝑧𝑧), the first step is to obtain a dry pressure profile 
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧). Dry profiles are needed because actual pressure 𝑃𝑃(𝑧𝑧) and temperature 𝑇𝑇(𝑧𝑧) are very close 
and are equal to dry pressure and dry temperature, respectively, for altitudes 𝑧𝑧 > 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ. 
The hydrostatic equation in the differential form to get 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) is as follows: 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧)
𝑑𝑑𝑧𝑧

= −𝑔𝑔(𝑧𝑧)𝜕𝜕(𝑧𝑧)
𝑅𝑅𝑅𝑅𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧)

                                                                          (3) 

 
Here 𝑧𝑧 is altitude; 𝑔𝑔(𝑧𝑧) – acceleration of gravity, computed as a function of geographic latitude 
and altitude above the reference ellipsoid derived from the Somigliana equation; 𝑁𝑁(𝑧𝑧) – 
refractivity; 𝑅𝑅=287.05 J kg-1 K-1 – the dry air constant; and 𝑘𝑘=77.6 N-unit K hPa-1 – the ideal gas 
refractivity constant. 
 
The 4th order Runge-Kutta integration of Equation (3) is used to ensure accurate 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) values. 
The initial top value of dry pressure 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧𝑠𝑠𝑁𝑁𝑡𝑡) is needed to start the integration. One way to obtain 
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧𝑠𝑠𝑁𝑁𝑡𝑡) (not used in Version 1.0 of the STAR GNSS RO 1D-VAR) is to calculate it as 
 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑�𝑧𝑧𝑠𝑠𝑁𝑁𝑡𝑡� =
−𝑔𝑔�𝑧𝑧𝑠𝑠𝑁𝑁𝑡𝑡�𝑁𝑁�𝑧𝑧𝑠𝑠𝑁𝑁𝑡𝑡�

𝑅𝑅𝑘𝑘(𝑑𝑑𝑑𝑑𝑛𝑛𝑁𝑁𝑑𝑑𝑧𝑧)

 

 
which assumes the boundary condition that 𝑑𝑑𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑧𝑧
= 0 at 𝑧𝑧𝑠𝑠𝑁𝑁𝑡𝑡.  However, the vertical gradient of 

refractivity at the very top of the profile, computed from the actual input data, is unstable and 
cannot be estimated accurately. For this reason, we currently use the 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧𝑠𝑠𝑁𝑁𝑡𝑡) value, taken from 
the input atmPrf dry pressure profile. 
 
Having a dry pressure profile, the dry temperature profile is derived from the simple relation 
 

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) =
𝑘𝑘𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧)
𝑁𝑁(𝑧𝑧)

 

 
Above 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ, retrieved pressure and temperature are equal to dry pressure and dry temperature, 
respectively, while water vapor partial pressure has an infinitesimally constant value (10-5 mbar). 
 
4.2 Wet Pressure Retrieval 
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Below 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 16 𝑘𝑘𝑘𝑘 (Versions 1.0), where water vapor contribution into observed signal 
becomes noticeable, and increases while altitude goes down, the hydrostatic equation of state in 
moist air is used: 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃(𝑧𝑧)
𝑑𝑑𝑧𝑧

= − 𝑔𝑔(𝑧𝑧)
𝑅𝑅𝑇𝑇𝑣𝑣(𝑧𝑧)

                                                           (4) 
 

The equations for virtual temperature 𝑇𝑇𝑣𝑣(𝑧𝑧) and conversion of water vapor partial pressure 𝑃𝑃𝑊𝑊(𝑧𝑧)  
to specific humidity 𝑞𝑞(𝑧𝑧) are [30]: 
 

𝑇𝑇𝑣𝑣(𝑧𝑧) = 𝑇𝑇(𝑧𝑧) ∙ (1 + 0.608𝑞𝑞(𝑧𝑧))                                              (5) 
 
 

𝑞𝑞(𝑧𝑧) = 0.622 𝑃𝑃𝑊𝑊(𝑧𝑧)
𝑃𝑃(𝑧𝑧)−0.378𝑃𝑃𝑊𝑊(𝑧𝑧)

                                                      (6) 
 

Equations (4-6) are well-known fundamental equations of atmospheric physics [30]. Here 0.622 is 
the ratio of water molar mass to air molar mass, and other numerical constants follow unit 
conversion from partial pressure-to-mixing ratio-to-specific humidity. Equation (4) is integrated 
using the same 4th-order Runge-Kutta method. 
 
The problem with retrieving the atmospheric state from RO observations is that to get actual 
pressure  𝑃𝑃 on altitude 𝑧𝑧, we need to know the temperature and water vapor at this level, but to 
know them, we need to know pressure first, as follows from Equations (4-6). To escape from this 
loop, the following approach has been implemented: 
 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) for 𝑧𝑧 ≥ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ 
 

𝑇𝑇(𝑧𝑧) = 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧) for 𝑧𝑧 ≥ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ 
 
Starting from 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ and below, the first guess pressure is calculated as 
 

𝑃𝑃𝐹𝐹𝐹𝐹(𝑧𝑧𝑠𝑠) = 𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑(𝑧𝑧𝑠𝑠−1) +
𝑔𝑔(𝑧𝑧)𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑(𝑧𝑧𝑠𝑠−1)
𝑅𝑅𝑇𝑇𝑑𝑑𝑠𝑠𝑑𝑑(𝑧𝑧𝑠𝑠−1) ∙ |𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑠𝑠−1| 

 
Here, subscript “FG” means First Guess, and subscript “rtr” is used for values retrieved on a 
previous altitude level. Using 𝑃𝑃𝐹𝐹𝐹𝐹 , then 𝑇𝑇𝑑𝑑𝑠𝑠𝑑𝑑(𝑧𝑧𝑠𝑠) and 𝑃𝑃𝑊𝑊𝑑𝑑𝑟𝑟𝑑𝑑(𝑧𝑧𝑠𝑠) are obtained from the optimal 
estimation technique (described above). Having 𝑇𝑇𝑑𝑑𝑠𝑠𝑑𝑑(𝑧𝑧𝑠𝑠) and 𝑃𝑃𝑊𝑊𝑑𝑑𝑟𝑟𝑑𝑑(𝑧𝑧𝑠𝑠), Equations (4-6) are used 
again to obtain 𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑1(𝑧𝑧𝑠𝑠). Then optimal estimation runs again to update 𝑇𝑇𝑑𝑑𝑠𝑠𝑑𝑑(𝑧𝑧𝑠𝑠) and 𝑃𝑃𝑊𝑊𝑑𝑑𝑟𝑟𝑑𝑑(𝑧𝑧𝑠𝑠) 
using 𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑1(𝑧𝑧𝑠𝑠). Finally, 𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑2(𝑧𝑧𝑠𝑠) is calculated using updated 𝑇𝑇𝑑𝑑𝑠𝑠𝑑𝑑(𝑧𝑧𝑠𝑠) and 𝑃𝑃𝑊𝑊𝑑𝑑𝑟𝑟𝑑𝑑(𝑧𝑧𝑠𝑠).  
As tests have shown, two runs of the optimal estimator are enough to obtain the stable value of 
wet pressure P. The check is performed by comparing the following values: 
 
 

𝑘𝑘𝑚𝑚𝑚𝑚 �
𝑃𝑃𝐹𝐹𝐹𝐹 − 𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑1

𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑1
�~0.03 % 



 
 

9 

 
 

𝑘𝑘𝑚𝑚𝑚𝑚 �
𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑1 − 𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑2

𝑃𝑃𝑑𝑑𝑠𝑠𝑑𝑑2
� < 0.005 % 

 
The maximum pressure difference values (0.03% and 0.005%) are taken over the whole altitude 
range for one month of COSMIC-2 processing (~100,000 profiles). It demonstrates that the final 
pressure is only a minimal adjustment from the 𝑃𝑃𝐹𝐹𝐹𝐹  value. It is also worth emphasizing that the 
wet pressure profile depends on retrieved values of temperature and water vapor below 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ.  
 
5. Quality Control 
 
The STAR GNSS RO 1D-Var algorithm has thorough quality control (QC) of input data, 
processing, and output results. The total output files with retrieved atmospheric quantities can be 
less than the complete input atmPrf files. The reasons why the RO event (i.e., input atmPrf file) 
can be rejected are listed below: 
 

1. The first guess files are not found. 
2. The input atmPrf file has flag = “bad”. 
3. Error in dry or wet pressure integration. It may occur if i) 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑠𝑠−1 ≥ 100 𝑘𝑘 while it is 

expected that 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑠𝑠−1 < 0 (level numbering goes from TOA to the surface), and/or ii) 
pressure at the particular level is negative. 

4. Interpolation error. The error may occur if i) the x-value is beyond the x-range but 
extrapolation is not allowed, ii) the x or y value is negative but logarithmic interpolation is 
required. The interpolation is widely used over the whole processing, for example, for the 
first guess, background covariance matrices, and output profiles thinning. 

5. The number of successfully retrieved levels is too small (currently, less than half of the 
input refractivity profile length). 

6. we also mark the side viewing angle between 60 degrees and 120 degrees as “bad” since 
they are of high uncertainty. 

7. L1 Signal-Noise-Ratio less than 300 V/V as “bad” also because they are of high 
uncertainty. 
 

In all other cases, the corresponding output wetPrf file will be produced. It has three QC variables: 
 

1. Scalar integer variable Overall_retrieval_quality with a value range from zero to five. 
Zero value means that retrieval of the complete profile is successful. Values from 1 to 5 
indicate that when thinning to the output altitude grid is performed, the altitude gap is more 
than 0.5, 1.0, 1.5, 2.0, and 2.5 km, respectively. The altitude gap is caused by too many 
consecutive levels where the retrieval has failed, i.e., N-residual convergence was not 
achieved. 

2. Character one-symbol-length variable bad can be “0” or “1”. Zero means successful 
retrieval; bad=”1” when Overall_retrieval_quality>0. 

3. Integer vector QC_lev that has the same length as output atmospheric profiles and may be 
equal to 0 or 1 for each level. It specifies retrieval quality for each level on the output 
altitude grid. Zero means that retrieved quantities for this level were obtained with 
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interpolation over an altitude gap wider than 0.5 km, or interpolation has failed (i.e., 
retrievals are probably bad). QC_lev(i)=1 means that thinning was successful for this level. 
 

It is worth reminding that actual retrievals are performed at atmPrf altitude grid (i.e., with high 
vertical resolution ~20 m), while output retrieved profiles have a fixed altitude grid from 0 km to 
60 km with a resolution of 50 m below 20 km and 100 m above 20 km. An internal QC vector, 
similar to QC_lev but for atmPrf levels, controls the retrieval quality over the whole processing. 
This internal “high resolution” quality vector determines all output QC variables. 
 
6. Main differences between the NOAA/STAR GNSS RO 1D-VAR Retrieval Algorithms 
version 1.0 and versions 3.2 
 
The NOAA/STAR RO team has released the version 3.2 of the RO 1D-Var algorithm in 2023. 
Basic physical concepts, described in Sections 2-4 of this document, remain the same in V.3.2 as 
in V.1.0. This section focuses on what is different in the versions. 
 
6.1 The first guess 
 
Version 3.2 uses ECMWF ERA5 six-hour forecast as the default first guess. The option to use 
GFS is still kept in the package for users to choose. We use ERA5 six-hour forecast global datasets 
at 0.25ox0.25o latitude/longitude grid in three moments, including 0:00, 12:00, and 24:00 UTC. 
ERA5 fixed pressure levels grid has 37 levels ranging from 1000 mbar to 1 mbar. The interpolation 
of ERA5 profiles to the actual RO observation (by location and time) is performed similarly to the 
GFS. 
 
6.2 Switching from dry to wet retrieval 
 
Beginning from version 3.0, we use static switching from dry to wet retrieval instead of dynamic 
one, described in Section 4.2. It occurs at the predefined altitude 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ. The input parameter 
𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ is equal to 25 km for v.3.2 and 40 km for v.3.0 and v.3.1. 
 
6.3 Output quality control 
 
Output quality control (QC) is based on the size of the altitude gap where the optimal estimator 
has failed (see Section 5). However, internal changes in the procedure affect output atmospheric 
profiles. Before version 3.1, not-retrieved levels (atmPrf grid) were marked as bad, and only 
pressure integration was continued through in these levels using first guess values for temperature 
and water vapor. The validation of versions 3.0 and 3.1, both configured with 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 40 𝑘𝑘𝑘𝑘, 
has shown that for certain missions (specifically COSMIC-1 and SPIRE), this method leads to a 
significant issue with approximately 10% of a total number of problematic profiles. These profiles 
have substantial data gaps, predominantly within the 30-40 km altitude range. However, the 
COSMIC-2 mission does not have such a problem. Unsuccessful retrievals in this region can be 
attributed to the challenges posed by low signal-to-noise ratios and low sensitivity of refractivity 
to atmospheric temperature and water vapor. 
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Beginning with version 3.2, the dry/wet switching altitude has been adjusted to 25 km to address 
these challenges. Any failed levels are also filled with first-guess temperature and water vapor 
values. This adjustment ensures that all levels are adequately populated before the thinning 
process. The thinning process has been improved, which involves projecting atmospheric profiles 
from the atmPrf grid to the output wetPrf grid. One particular enhancement includes a sliding 
averaging with ±40 𝑘𝑘 window to effectively smooth output profiles and incorporate more 
information from the finer retrieval altitude grid into the coarser output altitude grid, surpassing 
the capabilities of simple interpolation. 
 
Furthermore, an additional quality check involves identifying and flagging profiles with significant 
deviation from the first guess values. The threshold values are set at a sufficiently broad range, 
exceeding 50 K for temperature and/or 50hPa for water vapor partial pressure. The primary 
objective of this quality control measure is to exclude these obvious outliers from the dataset. 
Validation conducted over one month of data from COSMIC-1, COSMIC-2, and SPIRE missions 
has confirmed that, on average, such outliers occur less than once per day. 
 
6.4 Other features of the STAR RO 1D-VAR Retrieval Algorithm version 3.2 
 
The distinguishing feature of the STAR RO 1D-VAR algorithm version 3.0 is its capability to 
detect and handle Super-Refraction (SR) cases. It’s important to note that this algorithm aspect is 
currently under development, and a comprehensive description is presented in a separate ATBD.  
Version 3.0 of the software introduces a range of enhancements beyond the extensive updates in 
the SR processing. These improvements also include internal modifications to the input/output 
system, designed to optimize computer memory utilization and reduce the computational time 
required for stable operation of the RO 1D-Var algorithm in various computing environments. 
These changes enhance the efficiency and reliability of the software across different computing 
setups. 
 
Table 1 lists the key features and notable enhancements introduced in different STAR RO 1D-Var 
retrieval algorithm versions.  
 
Table 1. Summary of key features and enhancements in STAR RO 1D-Var versions. 
 
Version Main Feature and Enhancements Comments 

v.1.0 
Mar 2021 

1. Input: refractivity from atmPrf file 
2. First guess: GFS 6 hours forecast 
3. Composition of DRY and WET retrievals 
4. Dry retrieval above 16 km 
5. Dynamic switch from DRY to WET retrieval: starting from 
16 km down, check ∆𝑃𝑃 = �𝑃𝑃𝑠𝑠𝑁𝑁𝑠𝑠 − 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑�: dry retrieval is 
continued until ∆𝑃𝑃 < 0.001 ℎ𝑃𝑃𝑚𝑚, otherwise switch to wet 
retrieval. 

Original version 
The estimated value of 
dynamic switching 
altitude is 11.5 ± 1 km 
(stat over a couple of 
months of COSMIC-2 
processing) 

v.2.0  
Mar 2022 

1. Input: bending angle (BA) from atmPrf file 
2. The Abel inversion routine to obtain a refractivity profile is 
added 

Note: SR detection during 
Abel transform works if 
BA is computed with the 
STAR RO Forward 
Model. BA from atmPrf 



 
 

12 

3. Abel integration procedure includes the option to detect SR 
height location in cases when not-monotonic dependence 𝑛𝑛(𝑝𝑝) 
is obtained  
4. SR refractivity correction is introduced as a user’s option 

files always provide 
monotonic dependence 
𝑛𝑛(𝑝𝑝) 

v.2.1  
Dec 2022 

1. Input: get back to the refractivity profile from the atmPrf file Reason: the top portion of 
atmPrf BA cannot be used 
for BA extrapolation 
above atmPrf top altitude, 
which is needed for 
proper Abel integration. 
External sources for BA 
modeling above 60 km are 
necessary. 

v.3.0  
Mar 2023 

1. Input: refractivity from atmPrf file 
2. The option to use ERA5 6HF as the first guess is added 
3. Static switch from dry to wet retrieval, 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 40 𝑘𝑘𝑘𝑘 
4. Numerous updates in the SR procedure: 

• Dichotomy approach to evaluate top SR layer altitude 
• “Cut the Bubble” technique is introduced 
• Additional criteria to qualify RO events as “potential 

SR” and “confirmed SR” are added 

 

v.3.1 
Jul 2023 

1. The function to output STAR wetPrf files is moved to the 
separate task 
2. “Cut the Bubble” technique is updated (SR correction) 

Reason: to avoid fatal 
crashes of the package at 
some servers due to 
memory insufficiency 

v.3.2* 
Aug 2023 

1. Adjusted dry/wet switching altitude to 25 km 
2. Quality control checks for temperature and water vapor 
3. Filling failed levels with first guess values for temperature 
and water vapor 
4. Enhanced thinning procedure with sliding averaging 
 

Reason: high (=40 km) 
switching altitude results 
in fewer successful 
retrievals for some RO 
missions due to instability 
in the 30-40 km range. 

 

*We only released data generated by Version 1.0 and Version 3.2. The other versions between 
V.1.0 and V.3.2 are for user information. Note that the released 1D-Var-V3.2 data are processed 
with STAR Version 3.2 1D-Var package, which includes all the features implemented in the 
previous versions and uses ERA5 6HF as the first guess, but without SR correction. The approach 
to identifying SR and correcting the water vapor profiles for the SR layers is under development 
and is not detailed in this ATBD. 
 
To use the STAR 1D-VAR data, please cite  
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Appendix A 
The STAR GNSS Radio Occultation 1D-VAR Version 1.0 

Data Product User Guide 
NOAA/STAR GNSS RO Team 

2023-01-31 
1. Introduction 
The STAR Global Navigation Satellite System (GNSS) Radio Occultation (RO) one-dimension 
variational inversion algorithm (1D-VAR) software package is developed to retrieve atmospheric 
pressure, temperature, and water vapor from the refractivity obtained in RO observations. Input 
refractivity is taken from RO atmPrf files. RO atmPrf file includes RO bending angles, impact 
parameters, tangent point location, quality information, as well as refractivity. Currently, we use 
RO atmPrf generated by University Corporation for Atmospheric Research (UCAR) operational 
data processing center and distributed by COSMIC Data Analysis and Archive Center (CDAAC). 
In the future, we could use RO atmPrf files generated by the STAR GNSS RO team. The main 
output is collected in NetCDF files (one for each RO measurement). To be consistent with the 
name conversion from other RO processing centers, the output file name has a “wetPrf_” prefix 
and “_nc” suffix. The following sections provides more details on file name convention and its 
content. 
2. File Name Convention 
Output file name after the STAR GNSS RO-1D-VAR processing is generated using the following 
template: 
FileName = “wetPrf_FileStamp_STAR.Vn.n_nc”  
Red color marks unchangeable parts of the FileName: “wetPrf” is a type of output, “STAR” is a 
processing center (NOAA/NESDIS/STAR), “Vn.n” is the software version number, and “_nc” is 
for the file extension (NetCDF format). 
FileStamp is a string with 23 symbols in the form “XXXX.yyyy.doy.hh.mm.gns”. Here “XXXX” 
is a mission identifier, which depends on the missions (see Table A.1 for different GNSS receiver 
satellite missions). Values of “yyyy”, “doy”, “hh”, and “mm” are year, Julian day of the year, hour, 
and minute of the RO observation, respectively. The “gns” is the GNSS satellite identifier, with 
the first letter as “G” for GPS, “R” for GLONASS, “E” for Galileo, or “C” for BeiDou, and the 
rest two are two-digit GNSS satellite number.  
 
Table A.1. GNSS receiver satellite missions 
 
XXXX Meaning 
C0nn COSMIC-1, nn: 01-06, FM1 to FM6  
C2En COSMIC-2, n: 1-6, FM 1 to FM 6 
KOM5 KOMPSAT5 
MTPn MetOp, n: A, B, or C 
PAZn PAZ, n: 1 
Snnn Spire, nnn: three-digit satellite ID 
GOnn GeoOptics, nn: two-digit satellite ID 

 
3. Output File Content 
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3.1 Dimensions 
 
STAR GNSS RO-1D-VAR output file has only one dimension variable, named MSL_alt, which 
is the length (number of levels) for the output profiles.  
 
3.2 Attributes 
 
STAR RO-1D-VAR output file attribute variables are presented in Table A.2: 
 
Table A.2. STAR RO-1D-VAR output NetCDF file attribute variables: 
 
Name Meaning 
fileStamp File Stamp: explained in Section 1 of this User Guide 
year Year of the RO observation 
month Month of the RO observation 
day Day of the month of the RO observation 
hour Hour of the RO observation 
minute Minutes of the RO observation 
second Seconds of the RO observation 
DOY Julian day of year of the RO observation 
date Date of the RO observation in format “yyyy-mm-

dd_hh:mm:ss.ssss” 
atmPrf Name of the input atmPrf file 
fgsUsed Description of the atmospheric model used as the First Guess in RO-

1D-VAR; can be “ERA5” or “GFS” 
lat Nominal latitude (degrees North, -90:+90) 
lon Nominal longitude (degrees East, -180:+180) 
landmask “0”=Ocean; ‘1”=Land 
Overall_retrieval_quality Quality flag of the STAR RO-1D-VAR processing (“0” means 

“good”, otherwise “bad”) 
H_switch The altitude (unit=km) where switching from dry retrieval to wet 

retrieval happens 
SR_check v.3.0 and later: 0/1=do not/do SR processing 
SR_Flag v.3.0 and later: 0/1=case is not/is qualified as a “potential SR case” 
SR_Flag_Corr v.3.0 and later: 0/1=case is not/is qualified as a “confirmed SR case” 
SR_h1 v.3.0 and later: bottom altitude of the SR Shadow layer, units=[km] 
SR_h2 v.3.0 and later: top altitude of the SR Shadow layer, units=[km] 
SR_h3 v.3.0 and later: top altitude of the SR layer, units=[km] 
atmPrf_stdv Copy of the attribute “stdv” from input atmPrf file 
atmPrf_snr1avg Copy of the attribute “snr1avg” from input atmPrf file 
atmPrf_snr2avg Copy of the attribute “snr2avg” from input atmPrf file 
atmPrf_irs Copy of the attribute “irs” from input atmPrf file 
atmPrf_balmax Copy of the attribute “balmax” from input atmPrf file 
atmPrf_zbalmax Copy of the attribute “zbalmax” from input atmPrf file 
atmPrf_freq1 Copy of the attribute “freq1” from input atmPrf file 
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atmPrf_freq2 Copy of the attribute “freq2” from input atmPrf file 
atmPrf_bad Copy of the attribute “bad” (quality flag) from input atmPrf file 
bad Quality flag of the STAR RO-1D-VAR processing (“0” means 

“good”, otherwise “bad”) 
version STAR RO-1D-VAR software version number 
center Name of the processing center 
NCProperties NetCDF software version used to make file 

 
3.3 Output Profiles 
 
The collection of output profiles after STAR GNSS RO-1D-VAR processing is presented in Table 
A.3. All profiles are one-dimensional arrays of length MSL-alt. 
 
Table A.3. STAR GNSS RO-1D-VAR output NetCDF file profiles: 
 
Name Type Units Range Meaning 
MSL_alt float km 0.0 to 60.0 Mean sea level altitude of perigee point 
QC_lev integer n/a 0 or 1 Retrieval quality flag by level: 0=bad, 1=good 
lat float degrees -90 to +90 Latitude of perigee point 
lon float degrees -180 to 

+180 
Longitude of perigee point 

Temp float Celsius -200 to 100 Retrieved temperature 
Pres float mbar 0 to 1200 Retrieved pressure 
Vp float mbar 0 to 100 Retrieved water vapor partial pressure 
sph float g/kg 0 to 100 Computed specific humidity 
rh float % 0 to 100 Computed relative humidity 
ref float N-units 0 to 500 STAR thinning observed or corrected refractivity 
temp_dry float Celsius -200 to 

+100 
Retrieved dry temperature 

pres_dry float mbar 0 to 1200 Retrieved dry pressure 
Temp_1gs float Celsius -200 to 

+100 
Used First Guess temperature 

Vp_1gs float mbar 0 to 100 Used First Guess Water vapor partial pressure 
 
 


