NOAA Center for Satellite Applications and Research Banner
Radio Occultation Related Publication

  1. Shu-Ya Chen, Ying-Hwa Kua and Ching-Yuang Huang: The Impact of GPS RO Data on the Prediction of Tropical Cyclogenesis Using a Nonlocal Observation Operator: An Initial Assessment. Monthly Weather Review, Accepted. Click.
  2. Alves, D. B. M., E. M. de Souza, and T. A. F. Gouveia, 2020: Correlation between ionospheric scintillation effects and GNSS positioning over Brazil during the last solar maximum (2012-2014). J Atmos Sol-Terr Phy, 197. https://doi.org/10.1016/J.Jastp.2019.03.013.
  3. An, X. D., X. L. Meng, H. Chen, W. P. Jiang, R. J. Xi, and Q. S. Chen, 2020: Modelling Global Ionosphere Based on Multi-Frequency, Multi-Constellation GNSS Observations and IRI Model. Remote Sensing, 12. https://doi.org/10.3390/Rs12030439.
  4. Ansari, K., and T. S. Bae, 2020: Contemporary deformation and strain analysis in South Korea based on long-term (2000-2018) GNSS measurements. Int J Earth Sci, 109, 391-405. https://doi.org/10.1007/s00531-019-01809-4.
  5. Astudillo, J. M., L. Lau, Y. T. Tang, and T. Moore, 2020: A Novel Approach for the Determination of the Height of the Tropopause from Ground-Based GNSS Observations. Remote Sensing, 12. https://doi.org/10.3390/Rs12020293.
  6. Bahadur, B., and M. Nohutcu, 2020: Impact of observation sampling rate on Multi-GNSS static PPP performance. Surv Rev. https://doi.org/10.1080/00396265.2019.1711346.
  7. Benjamin, A. R., D. O’Brien, G. Barnes, B. E. Wilkinson, and W. Volkmann, 2020: Improving Data Acquisition Efficiency: Systematic Accuracy Evaluation of GNSS-Assisted Aerial Triangulation in UAS Operations. J Surv Eng, 146. https://doi.org/10.1061/(Asce)Su.1943-5428.0000298.
  8. Calabia, A., I. Molina, and S. G. Jin, 2020: Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients. Remote Sensing, 12. https://doi.org/10.3390/Rs12010122.
  9. Camps, A., 2020: Spatial Resolution in GNSS-R Under Coherent Scattering. IEEE Geosci. Remote Sens. Lett., 17, 32-36. https://doi.org/10.1109/Lgrs.2019.2916164.
  10. Chen, C., and G. B. Chang, 2020: Low-cost GNSS/INS integration for enhanced land vehicle performance. Meas Sci Technol, 31. https://doi.org/10.1088/1361-6501/Ab52cb.
  11. Cole, B., J. L. Awange, and A. Saleem, 2020: Environmental spatial data within dense tree cover: exploiting multi-frequency GNSS signals to improve positional accuracy. Int J Environ Sci Te. https://doi.org/10.1007/s13762-020-02634-y.
  12. Comite, D., F. Ticconi, L. Dente, L. Guerriero, and N. Pierdicca, 2020: Bistatic Coherent Scattering From Rough Soils With Application to GNSS Reflectometry. Ieee T Geosci Remote, 58, 612-625. https://doi.org/10.1109/Tgrs.2019.2938442.
  13. Deng, C. L., Q. Liu, X. Zou, W. M. Tang, J. H. Cui, Y. W. Wang, and C. Guo, 2020: Investigation of Tightly Combined Single-Frequency and Single-Epoch Precise Positioning Using Multi-GNSS Data. Remote Sensing, 12. https://doi.org/10.3390/Rs12020285.
  14. Dou, J., B. Xu, and L. Dou, 2020: Performance assessment of GNSS scalar and vector frequency tracking loops. Optik, 202. https://doi.org/10.1016/J.Ijleo.2019.163552.
  15. Douik, A., X. Liu, T. Ballal, T. Y. Al-Naffouri, and B. Hassibi, 2020: Precise 3-D GNSS Attitude Determination Based on Riemannian Manifold Optimization Algorithms. Ieee T Signal Proces, 68, 284-299. https://doi.org/10.1109/Tsp.2019.2959226.
  16. El-Mowafy, A., 2020: Fault detection and integrity monitoring of GNSS positioning in intelligent transport systems. Iet Intell Transp Sy, 14, 164-171. https://doi.org/10.1049/iet-its.2019.0248.
  17. Fan, P. R., X. W. Cui, and M. Q. Lu, 2020: Space and Frequency Diversity Characterization of Mobile GNSS Receivers in Multipath Fading Channels. Tsinghua Sci Technol, 25, 294-301. https://doi.org/10.26599/Tst.2019.9010016.
  18. Fang, W., and Coauthors, 2020: A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal Outages. Remote Sensing, 12. https://doi.org/10.3390/Rs12020256.
  19. Feneniche, W., K. Rouabah, M. Flissi, S. Atia, S. Meguellati, and S. E. Mezaache, 2020: An Enhanced SDPE Method for Long Delay Multipath Mitigation in GNSS Applications. Smart Innov Syst Tec, 147, 89-98. https://doi.org/10.1007/978-3-030-21009-0_8.
  20. Feng, W., Y. H. Zhao, L. T. Zhou, D. F. Huang, and A. Hassan, 2020: Fast cycle slip determination for high-rate multi-GNSS RTK using modified geometry-free phase combination. Gps Solut, 24. https://doi.org/10.1007/s10291-020-0956-6.
  21. Franzese, G., N. Linty, and F. Dovis, 2020: Semi-Supervised GNSS Scintillations Detection Based on DeepInfomax. Appl Sci-Basel, 10. https://doi.org/10.3390/App10010381.
  22. Fu, Z., X. Feng, X. M. Duan, and Z. Y. Fu, 2020: An improved integrated navigation method based on RINS, GNSS and kinematics for port heavy-duty AGV. P I Mech Eng D-J Aut. https://doi.org/10.1177/0954407019900031.
  23. Fukahata, Y., A. Meneses-Gutierrez, and T. Sagiya, 2020: Detection of plastic strain using GNSS data of pre- and post-seismic deformation of the 2011 Tohoku-oki earthquake. Earth Planets Space, 72. https://doi.org/10.1186/s40623-020-1144-1.
  24. Ghoniem, I. F., A. E. K. Mousa, and G. El-Fiky, 2020: GNSS-RO LEO satellite orbit optimization for Egypt and the Middle East region. Alex Eng J, 59, 389-397. https://doi.org/10.1016/j.aej.2020.01.006.
  25. Giannaros, C., V. Kotroni, K. Lagouvardos, T. M. Giannaros, and C. Pikridas, 2020: Assessing the Impact of GNSS ZTD Data Assimilation into the WRF Modeling System during High-Impact Rainfall Events over Greece. Remote Sensing, 12. https://doi.org/10.3390/Rs12030383.
  26. Gonzalez-Moradas, M. D. R., and W. Viveen, 2020: Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens Environ, 237. https://doi.org/10.1016/J.Rse.2019.111509.
  27. Han, F., J. Gao, X. R. Li, and Z. M. Chen, 2020: A Four-Channel CMOS Front-End for Interference-Robust GNSS Receiver. Electronics-Switz, 9. https://doi.org/10.3390/electronics9020291.
  28. Han, M. T., Y. L. Zhu, D. K. Yang, Q. Chang, X. B. Hong, and S. H. Song, 2020: Soil moisture monitoring using GNSS interference signal: proposing a signal reconstruction method. Remote Sens Lett, 11, 373-382. https://doi.org/10.1080/2150704X.2020.1718235.
  29. Hasheminasab, S. M., T. Zhou, and A. Habib, 2020: GNSS/INS-Assisted Structure from Motion Strategies for UAV-Based Imagery over Mechanized Agricultural Fields. Remote Sensing, 12. https://doi.org/10.3390/Rs12030351.
  30. Hdidou, F. Z., S. Mordane, P. Moll, J. F. Mahfouf, H. Erraji, and Z. Dahmane, 2020: Impact of the variational assimilation of ground-based GNSS zenith total delay into AROME-Morocco model. Tellus A, 72, 1-13. https://doi.org/10.1080/16000870.2019.1707854.
  31. He, Q. M., and Coauthors, 2020: Real-Time GNSS-Derived PWV for Typhoon Characterizations: A Case Study for Super Typhoon Mangkhut in Hong Kong. Remote Sensing, 12. https://doi.org/10.3390/Rs12010104.
  32. Hegarty, C. J., D. Bobyn, J. Grabowski, and A. J. Van Dierendonck, 2020: An overview of the effects of out-of-band interference on GNSS receivers. Navigation-Us. https://doi.org/10.1002/navi.345.
  33. Heublein, M., P. E. Bradley, and S. Hinz, 2020: Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing. Ann Geophys, 38, 179-189. https://doi.org/10.5194/angeo-38-179-2020.
  34. Hoseini, M., F. Alshawaf, H. Nahavandchi, G. Dick, and J. Wickert, 2020: Towards a zero-difference approach for homogenizing GNSS tropospheric products. Gps Solut, 24. https://doi.org/10.1007/S10291-019-0915-2.
  35. Hoseini, M., M. Asgarimehr, V. Zavorotny, H. Nahavandchi, C. Ruf, and J. Wickert, 2020: First Evidence of Mesoscale Ocean Eddies Signature in GNSS Reflectometry Measurements. Remote Sensing, 12. https://doi.org/10.3390/Rs12030542.
  36. Imam, R., M. Pini, G. Marucco, F. Dominici, and F. Dovis, 2020: UAV-Based GNSS-R for Water Detection as a Support to Flood Monitoring Operations: A Feasibility Study. Appl Sci-Basel, 10. https://doi.org/10.3390/App10010210.
  37. Kalantari, A., and E. G. Larsson, 2020: Statistical test for GNSS spoofing attack detection by using multiple receivers on a rigid body. Eurasip J Adv Sig Pr, 2020. https://doi.org/10.1186/S13634-020-0663-Z.
  38. Kaloop, M. R., C. O. Yigit, A. A. Dindar, M. Elsharawy, and J. W. Hu, 2020: Evaluation of the high-rate GNSS-PPP method for vertical structural motion. Surv Rev, 52, 159-171. https://doi.org/10.1080/00396265.2018.1534362.
  39. Kaloop, M. R., C. O. Yigit, A. El-Mowafy, A. A. Dindar, M. Bezcioglu, and J. W. Hu, 2020: Hybrid Wavelet and Principal Component Analyses Approach for Extracting Dynamic Motion Characteristics from Displacement Series Derived from Multipath-Affected High-Rate GNSS Observations. Remote Sensing, 12. https://doi.org/10.3390/Rs12010079.
  40. Khankalantary, S., S. Rafatnia, and H. Mohammadkhani, 2020: An adaptive constrained type-2 fuzzy Hammerstein neural network data fusion scheme for low-cost SINS/GNSS navigation system. Appl Soft Comput, 86. https://doi.org/10.1016/J.Asoc.2019.105917.
  41. Kumar, S. V. V. A., R. K. Luhar, R. Sharma, and R. Kumar, 2020: Design and development of a low-cost GNSS drifter for rip currents. Curr Sci India, 118, 273-279. https://doi.org/10.18520/cs/v118/i2/273-279.
  42. Lasota, E., W. Rohm, G. Guerova, and C. Y. Liu, 2020: A Comparison Between Ray-Traced GFS/WRF/ERA and GNSS Slant Path Delays in Tropical Cyclone Meranti. Ieee T Geosci Remote, 58, 421-435. https://doi.org/10.1109/Tgrs.2019.2936785.
  43. Li, W. Q., E. Cardellach, F. Fabra, S. Ribo, and A. Rius, 2020: Measuring Greenland Ice Sheet Melt Using Spaceborne GNSS Reflectometry From TechDemoSat-1. Geophysical Research Letters, 47. https://doi.org/10.1029/2019GL086477.
  44. ——, 2020: Assessment of Spaceborne GNSS-R Ocean Altimetry Performance Using CYGNSS Mission Raw Data. Ieee T Geosci Remote, 58, 238-250. https://doi.org/10.1109/Tgrs.2019.2936108.
  45. Li, Y. F., J. Cervantes, N. C. Shivaramaiah, D. M. Akos, and M. L. Wang, 2020: Configurable GPS/GNSS Antenna Module Resistant to RFI Saturation. Ieee T Aero Elec Sys, 56, 381-392. https://doi.org/10.1109/Taes.2019.2915407.
  46. Liu, C. H., J. D. Qian, Z. C. Wang, and J. Wu, 2020: A linear computationally efficient Kalman filter for robust attitude estimation from horizon measurements and GNSS observations. Sensor Rev. https://doi.org/10.1108/Sr-07-2019-0186.
  47. Liu, T., B. C. Zhang, Y. B. Yuan, and X. Zhang, 2020: On the application of the raw-observation-based PPP to global ionosphere VTEC modeling: an advantage demonstration in the multi-frequency and multi-GNSS context. J Geodesy, 94. https://doi.org/10.1007/s00190-019-01332-z.
  48. Liu, A., Z. S. Li, N. B. Wang, C. Yuan, and H. Yuan, 2020: Analysis of the short-term temporal variation of differential code bias in GNSS receiver. Measurement, 153. https://doi.org/10.1016/j.measurement.2019.107448.
  49. Lowe, S. T., C. Chew, J. Shah, and M. Kilzer, 2020: An Aircraft Wetland Inundation Experiment Using GNSS Reflectometry. Remote Sensing, 12. https://doi.org/10.3390/Rs12030512.
  50. Luo, X. M., S. F. Gu, Y. D. Lou, L. Cai, and Z. Z. Liu, 2020: Amplitude scintillation index derived from C/N-0 measurements released by common geodetic GNSS receivers operating at 1 Hz. J Geodesy, 94. https://doi.org/10.1007/S00190-020-01359-7.
  51. Lyu, D. Q., F. L. Zeng, X. F. Ouyang, and H. C. Zhang, 2020: Real-time clock comparison and monitoring with multi-GNSS precise point positioning: GPS, GLONASS and Galileo. Adv Space Res, 65, 560-571. https://doi.org/10.1016/j.asr.2019.10.029.
  52. Meneses-Gutierrez, A., and T. Nishimura, 2020: Inelastic deformation zone in the lower crust for the San-in Shear Zone, Southwest Japan, as observed by a dense GNSS network. Earth Planets Space, 72. https://doi.org/10.1186/s40623-020-1138-z.
  53. Mohammednour, A. B., and A. T. Ozdemir, 2020: GNSS positioning accuracy improvement based on surface meteorological parameters using artificial neural networks. Int J Commun Syst. https://doi.org/10.1002/Dac.4373.
  54. Nguyen, V. K., A. Rovira-Garcia, J. M. Juan, J. Sanz, G. Gonzalez-Casado, T. V. La, and T. H. Ta, 2020: Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz (vol 93, 1985, 2019). J Geodesy, 94. https://doi.org/10.1007/S00190-019-01338-7.
  55. Nie, Z. X., F. Liu, and Y. Gao, 2020: Real-time precise point positioning with a low-cost dual-frequency GNSS device. Gps Solut, 24. https://doi.org/10.1007/S10291-019-0922-3.
  56. Notti, D., A. Cina, A. Manzino, A. Colombo, I. H. Bendea, P. Mollo, and D. Giordan, 2020: Low-Cost GNSS Solution for Continuous Monitoring of Slope Instabilities Applied to Madonna Del Sasso Sanctuary (NW Italy). Sensors-Basel, 20. https://doi.org/10.3390/S20010289.
  57. Odolinski, R., P. J. G. Teunissen, and B. Zhang, 2020: Multi-GNSS processing, positioning and applications PREFACE. J Spat Sci, 65, 3-5. https://doi.org/10.1080/14498596.2020.1687170.
  58. Palancz, B., and L. Volgyesi, 2020: A Numeric-Symbolic Solution of GNSS Phase Ambiguity. Period Polytech-Civ, 64, 223-230. https://doi.org/10.3311/Ppci.15092.
  59. Parizzi, A., F. R. Gonzalez, and R. Brcic, 2020: A Covariance-Based Approach to Merging InSAR and GNSS Displacement Rate Measurements. Remote Sensing, 12. https://doi.org/10.3390/Rs12020300.
  60. Park, K. W., J. I. Park, and C. Park, 2020: Efficient Methods of Utilizing Multi-SBAS Corrections in Multi-GNSS Positioning. Sensors-Basel, 20. https://doi.org/10.3390/S20010256.
  61. Paziewski, J., and M. Crespi, 2020: High-precision multi-constellation GNSS: methods, selected applications and challenges. Meas Sci Technol, 31. https://doi.org/10.1088/1361-6501/Ab20a6.
  62. Pelc-Mieczkowska, R., D. Tomaszewski, and M. Bednarczyk, 2020: GNSS obstacle mapping as a data preprocessing tool for positioning in a multipath environment. Meas Sci Technol, 31. https://doi.org/10.1088/1361-6501/Ab2a48.
  63. Qiu, H., and S. G. Jin, 2020: Global Mean Sea Surface Height Estimated from Spaceborne Cyclone-GNSS Reflectometry. Remote Sensing, 12. https://doi.org/10.3390/Rs12030356.
  64. Ren, X. D., J. Chen, X. X. Li, and X. H. Zhang, 2020: Multi-GNSS contributions to differential code biases determination and regional ionospheric modeling in China. Adv Space Res, 65, 221-234. https://doi.org/10.1016/j.asr.2019.10.014.
  65. Ren, X. D., X. H. Zhang, M. Schmidt, Z. B. Zhao, J. Chen, J. C. Zhang, and X. X. Li, 2020: Performance of GNSS Global Ionospheric Modeling Augmented by LEO Constellation. Earth Space Sci, 7. https://doi.org/10.1029/2019EA000898.
  66. Rovira-Garcia, A., D. Ibanez-Segura, R. Orus-Perez, J. M. Juan, J. Sanz, and G. Gonzalez-Casado, 2020: Assessing the quality of ionospheric models through GNSS positioning error: methodology and results. Gps Solut, 24. https://doi.org/10.1007/S10291-019-0918-Z.
  67. Sakic, P., V. Ballu, and J. Y. Royer, 2020: A Multi-Observation Least-Squares Inversion for GNSS-Acoustic Seafloor Positioning. Remote Sensing, 12. https://doi.org/10.3390/Rs12030448.
  68. Sethi, H. S., and N. Dashora, 2020: Automated power spectrum analysis of low-latitude ionospheric scintillations recorded using software GNSS receiver. Gps Solut, 24. https://doi.org/10.1007/s10291-019-0945-9.
  69. Shao, K., D. F. Gu, B. Ju, W. B. Wang, C. B. Wei, X. J. Duan, and Z. M. Wang, 2020: Analysis of Tiangong-2 orbit determination and prediction using onboard dual-frequency GNSS data. Gps Solut, 24. https://doi.org/10.1007/s10291-019-0927-y.
  70. She, C. L., X. N. Yue, L. H. Hu, and F. G. Zhang, 2020: Estimation of Ionospheric Total Electron Content From a Multi-GNSS Station in China. Ieee T Geosci Remote, 58, 852-860. https://doi.org/10.1109/Tgrs.2019.2941049.
  71. Shin, Y., and C. G. Park, 2020: Design of a GNSS Antenna to Prevent LNA Saturation and Intermodulation Caused by S-Band Signals. Int J Aeronaut Space. https://doi.org/10.1007/s42405-020-00252-z.
  72. Sosnica, K., R. Zajdel, G. Bury, J. Bosy, M. Moore, and S. Masoumi, 2020: Quality assessment of experimental IGS multi-GNSS combined orbits. Gps Solut, 24. https://doi.org/10.1007/s10291-020-0965-5.
  73. Sun, R., W. Y. Zhang, J. Z. Zheng, and W. Y. Ochieng, 2020: GNSS/INS Integration with Integrity Monitoring for UAV No-fly Zone Management. Remote Sensing, 12. https://doi.org/10.3390/Rs12030524.
  74. Trakolkul, C., and C. Satirapod, 2020: Variations of precipitable water vapor using GNSS CORS in Thailand. Surv Rev. https://doi.org/10.1080/00396265.2020.1713611.
  75. Trojanowicz, M., E. Osada, and K. Karsznia, 2020: Precise local quasigeoid modelling using GNSS/levelling height anomalies and gravity data. Surv Rev, 52, 76-83. https://doi.org/10.1080/00396265.2018.1525981.
  76. Tu, J. X., X. Q. Zhan, M. L. Chen, H. Gao, and Y. K. Chen, 2020: GNSS intermediate spoofing detection via dual-peak in frequency domain and relative velocity residuals. Iet Radar Sonar Nav, 14, 439-447. https://doi.org/10.1049/iet-rsn.2019.0366.
  77. Tu, R., J. H. Liu, R. Zhang, L. H. Fan, P. F. Zhang, and J. Q. Han, 2020: Real-time kinematic positioning algorithm with GNSS and high-frequency accelerometer observations for broadband signals. Meas Sci Technol, 31. https://doi.org/10.1088/1361-6501/Ab5d87.
  78. Tu, R., P. F. Zhang, R. Zhang, L. H. Fan, J. H. Liu, and X. C. Lu, 2020: GNSS time offset monitoring based on the single difference among systems. Iet Radar Sonar Nav, 14, 299-302. https://doi.org/10.1049/iet-rsn.2019.0387.
  79. Varbla, S., A. Ellmann, and N. Delpeche-Ellmann, 2020: Validation of Marine Geoid Models by Utilizing Hydrodynamic Model and Shipborne GNSS Profiles. Mar Geod, 43, 134-162. https://doi.org/10.1080/01490419.2019.1701153.
  80. Veettil, S. V., M. Aquino, H. A. Marques, and A. Moraes, 2020: Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J Geodesy, 94. https://doi.org/10.1007/S00190-020-01345-Z.
  81. Vergara, M., F. Antreich, C. Enneking, M. Sgammini, and G. Seco-Granados, 2020: A model for assessing the impact of linear and nonlinear distortions on a GNSS receiver. Gps Solut, 24. https://doi.org/10.1007/S10291-019-0917-0.
  82. Wang, K. N., C. O. Ao, and M. D. Juarez, 2020: GNSS-RO Refractivity Bias Correction Under Ducting Layer Using Surface-Reflection Signal. Remote Sensing, 12. https://doi.org/10.3390/Rs12030359.
  83. Wang, B. Y., N. C. Shivaramaiah, D. M. Akos, and J. L. Wei, 2020: GNSS direction of arrival tracking using the rotate-to-zero direction lock loop. Gps Solut, 24. https://doi.org/10.1007/s10291-020-0952-x.
  84. Wen, C. L., Y. D. Dai, Y. Xia, Y. H. Lian, J. B. Tan, C. Wang, and J. Li, 2020: Toward Efficient 3-D Colored Mapping in GPS-/GNSS-Denied Environments. IEEE Geosci. Remote Sens. Lett., 17, 147-151. https://doi.org/10.1109/Lgrs.2019.2916844.
  85. Wright, G., 2020: Multi-GNSS processing, positioning and applications. J Spat Sci, 65, 1-1. https://doi.org/10.1080/14498596.2020.1712787.
  86. Wu, S. S., X. B. Zhao, C. L. Pang, L. Zhang, Z. M. Xu, and K. Zou, 2020: Improving ambiguity resolution success rate in the joint solution of GNSS-based attitude determination and relative positioning with multivariate constraints. Gps Solut, 24. https://doi.org/10.1007/s10291-019-0943-y.
  87. Xia, Y., S. G. Pan, W. Gao, B. G. Yu, X. L. Gan, Y. Zhao, and Q. Zhao, 2020: Recurrent neural network based scenario recognition with Multi-constellation GNSS measurements on a smartphone. Measurement, 153. https://doi.org/10.1016/j.measurement.2019.107420.
  88. Yalvac, S., 2020: Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium- and high-grade deformation areas. Environ Monit Assess, 192. https://doi.org/10.1007/S10661-019-8009-8.
  89. Yan, C., Q. Wang, Y. Zhang, F. Y. Ke, W. Gao, and Y. Yang, 2020: Analysis of GNSS clock prediction performance with different interrupt intervals and application to real-time kinematic precise point positioning. Adv Space Res, 65, 978-996. https://doi.org/10.1016/j.asr.2019.10.017.
  90. Yan, Z. B., J. A. Fraire, K. L. Zhao, H. C. Yan, P. G. Madoery, W. F. Li, and H. Yang, 2020: Distributed Contact Plan Design for GNSSs. Ieee T Aero Elec Sys, 56, 660-672. https://doi.org/10.1109/Taes.2019.2917492.
  91. Yang, S. C., Z. M. Huang, C. Y. Huang, C. C. Tsai, and T. K. Yeh, 2020: A Case Study on the Impact of Ensemble Data Assimilation with GNSS-Zenith Total Delay and Radar Data on Heavy Rainfall Prediction. Monthly Weather Review, 148, 1075-1098. https://doi.org/10.1175/Mwr-D-18-0418.1.
  92. Yigit, C. O., A. El-Mowafy, M. Bezcioglu, and A. A. Dindar, 2020: Investigating the effects of ultra-rapid, rapid vs. final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements. Struct Eng Mech, 73, 427-436. https://doi.org/10.12989/sem.2020.73.4.427.
  93. Yimin, W., L. Hong, and L. Mingquan, 2020: Spoofing profile estimation-based GNSS spoofing identification method for tightly coupled MEMS INS/GNSS integrated navigation system. Iet Radar Sonar Nav, 14, 216-225. https://doi.org/10.1049/iet-rsn.2019.0264.
  94. Yokota, Y., and T. Ishikawa, 2020: Shallow slow slip events along the Nankai Trough detected by GNSS-A. Sci Adv, 6. https://doi.org/10.1126/sciadv.aay5786.
  95. Yu, X. W., S. Q. Xia, and W. Gao, 2020: A practical method for calculating reliable integer float estimator in GNSS precise positioning. Surv Rev. https://doi.org/10.1080/00396265.2020.1718268.
  96. Yue, C. Y., Y. M. Dang, C. H. Xu, S. Z. Gu, and H. Y. Dai, 2020: Effects and Correction of Atmospheric Pressure Loading Deformation on GNSS Reference Stations in Mainland China. Math Probl Eng, 2020. https://doi.org/10.1155/2020/4013150.
  97. Zhang, Z. T., and B. F. Li, 2020: Unmodeled error mitigation for single-frequency multi-GNSS precise positioning based on multi-epoch partial parameterization. Meas Sci Technol, 31. https://doi.org/10.1088/1361-6501/Ab4b65.
  98. Zhang, Z. Y., F. Guo, and X. H. Zhang, 2020: Triple-frequency multi-GNSS reflectometry snow depth retrieval by using clustering and normalization algorithm to compensate terrain variation. Gps Solut, 24. https://doi.org/10.1007/s10291-020-0966-4.
  99. Zhao, L. W., J. Dousa, S. R. Ye, and P. Vaclavovic, 2020: A flexible strategy for handling the datum and initial bias in real-time GNSS satellite clock estimation. J Geodesy, 94. https://doi.org/10.1007/s00190-019-01328-9.
  100. Zhao, Q. Z., P. F. Yang, W. Q. Yao, and Y. B. Yao, 2020: Hourly PWV Dataset Derived from GNSS Observations in China. Sensors-Basel, 20. https://doi.org/10.3390/S20010231.
  101. Zhou, X. H., Y. L. Yang, W. P. Jiang, and X. Y. Zhou, 2020: Preliminary spatial-temporal pattern of vertical deformation revealed by GNSS imaging. Chinese J Geophys-Ch, 63, 155-171. https://doi.org/10.6038/cjg2020M0473.
  1. Cross-Comparison and Methodological Improvement in GPS Tomography by Hugues Brenot , Witold Rohm , Michal Kačmařík , Gregor Möller , André Sá , Damian Tondaś , Lukas Rapant , Riccardo Biondi , Toby Manning and Cédric Champollion Remote Sens. 2020, 12(1), 30; https://doi.org/10.3390/rs12010030  - 19 Dec 2019
  2. Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio Occultation Measurements by F. Joseph Turk , Ramon Padullés , Chi O. Ao , Manuel de la Torre Juárez , Kuo-Nung Wang , Garth W. Franklin , Stephen T. Lowe , Svetla M. Hristova-Veleva , Eric J. Fetzer , Estel Cardellach , Yi-Hung Kuo and J. David Neelin Remote Sens. 2019, 11(20), 2399; https://doi.org/10.3390/rs11202399  - 16 Oct 2019
  3. High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks by Orhan Eroglu , Mehmet Kurum , Dylan Boyd and Ali Cafer Gurbuz Remote Sens. 2019, 11(19), 2272; https://doi.org/10.3390/rs11192272 - 28 Sep 2019
  4. Establishment and Assessment of a New GNSS Precipitable Water Vapor Interpolation Scheme Based on the GPT2w Model by Fei Yang , Jiming Guo , Xiaolin Meng , Junbo Shi and Lv Zhou Remote Sens. 2019, 11(9), 1127; https://doi.org/10.3390/rs11091127  - 10 May 2019
  5. Response to Variations in River Flowrate by a Spaceborne GNSS-R River Width Estimator by April Warnock and Christopher Ruf Remote Sens. 2019, 11(20), 2450; https://doi.org/10.3390/rs11202450  - 22 Oct 2019
  6. A Real-Time On-Orbit Signal Tracking Algorithm for GNSS Surface Observations by Scott Gleason Remote Sens. 2019, 11(16), 1858; https://doi.org/10.3390/rs11161858 - 09 Aug 2019
  7. Alexander, S. P., T. Tsuda, and Y. Kawatani, 2008a: COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophys. Res. Lett., 35, L10808, https://doi.org/10.1029/2008GL033174.
  8. Alexander, S. P., T. Tsuda, Y. Kawatani, and M. Takahashi, 2008b: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113, D24115, https://doi.org/10.1029/2008JD010039.
  9. Alexander, S. P., and M. G. Shepherd, 2010: Planetary wave activity in the polar lower stratosphere. Atmos. Chem. Phys., 10, 707-718, https//doi.org/10.5194/acp-10-707-2010.
  10. Alexander, S. P., A. R. Klekociuk, M. C. Pitts, A. J. McDonald, and A. Arevalo-Torres, 2011: The effect of orographic gravity waves on Antarctic polar stratospheric cloud occurrence and composition. J. Geophys. Res., 116, D06109, https://doi.org/10.1029/2010JD015184.
  11. Alexander, P., T. Schmidt, and A. de la Torre, 2018a: A method to determine gravity wave net momentum flux, propagation direction, and “real” wavelengths: A GPS radio occultations soundings case study. Earth and Space Sci., 5, https://doi.org/10.1002/2017EA000342.
  12. Alexander, M. J., A. W. Grimsdell, C. C. Stephan, and L. Hoffmann, 2018b: MJO-related intraseasonal variation in the stratosphere: Gravity waves and zonal winds. J. Geophys. Res. Atmos., 123(2), 775-788, https://doi.org/10.1002/2017JD027620.
  13. Angling, M. J., S. Elvidge, and S. B. Healy, 2018: Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements, Atmos. Meas. Tech., 11(4), 2213–2224, doi:10.5194/amt-11-2213-2018.
  14. Anthes, R. A., Y.-H. Kuo, D. P. Baumhefner, R. M. Errico, and T. W. Bettge, 1985: Predictability of mesoscale atmospheric motions.  Contribution to "Issues in Atmospheric and Oceanic Modeling," Advances in Geophysics, 28B, 159-202.
  15. Anthes, R.A., C. Rocken, and Y.-H. Kuo, 2000: Applications of COSMIC to meteorology and climate. Special issue of Terrestrial, Atmospheric and Oceanic Sciences (TAO), 11, 115-156.
  16. Anthes, R. A., P.A. Bernhardt, Y. Chen, L. Cucurull, K.F. Dymond, D. Ector, S.B. Healy, S.P. Ho, D.C. Hunt, Y.-H. Kuo, H. Liu, K. Manning, C. McCormick, T.K. Meehan, W.J. Randel, C. Rocken, W.S. Schreiner, S.V.   Sokolovskiy, S. Syndergaard, D.C. Thompson, K.E. Trenberth, T.K. Wee, N.L. Yen, and Z. Zeng, 2008: The COSMIC/FORMOSAT-3 Mission-Early results, Bull. Amer. Meteor. Soc., 89, 313–333.
  17. Anthes, R. A., 2011: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077-1103,doi:10.5194/amt-4-1077-2011.
  18. Anthes, R. A. and T. Rieckh, 2018: Estimating observation and model error variances using multiple data sets. Atmos. Meas. Tech., 11, 4239–4260, 2018. https://doi.org/10.5194/amt-11-4239-2018.
  19. Ao, C.O., T.K. Meehan, G.A. Hajj, A.J. Mannucci and G. Beyerle, 2003: Lower tropospheric refractivity bias in GPS occultation retrievals. J. Geophys. Res., 108, D18, doi:10.1029/2002JD003216.
  20. Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117,doi:10.1029/2012JD017598. 
  21. Ao, C. O., A. J. Mannucci, and E. R. Kursinski, 2012: Improving GPS Radio occultation stratospheric refractivity retrievals for climate benchmarking, Geophysical Research Letters, 39(12), n/a–n/a,doi:10.1029/2012GL051720.
  22. Ao, C. O., and A. J. Hajj, 2013: Monitoring the width of the tropical belt with GPS radio occultation measurements. Geophys. Res. Lett., 40, 6236–6241, doi:10.1002/2013GL058203.
  23. Aparicio J. M. and G. Deblonde, 2008. Impact of the assimilation of CHAMP refractivity profiles in Environment Canada global forecasts. Mon. Wea. Rev., 136: 257–275.
  24. Aparicio, J. M., Deblonde, G., Garand, L., and Laroche, S., 2009: The signature of the atmospheric compressibility factor in COSMIC, CHAMP and GRACE radio occultation data, J. Geophys. Res., 114, D16144,doi:10.1029/2008JD011156, 2009. 
  25. Aparicio, J. M., and S. Laroche, 2011: An evaluation of the expression of the atmospheric refractivity for GPS signals, J. Geophys. Res., 116, D11104, doi:10.1029/2010JD015214.
  26. Aparicio, J.M. and S. Laroche, 2015: Estimation of the Added Value of the Absolute Calibration of GPS Radio Occultation Data for Numerical Weather Prediction. Mon. Wea. Rev., 143, 1259–1274, doi:10.1175/MWR-D-14-00153.1
  27. Bauer, P., G. Radnóti, S. Healy, and C. Cardinali, 2014: GNSS Radio Occultation Constellation Observing System Experiments. Mon. Wea. Rev., 142, 555–572, doi:10.1175/MWR-D-13-00130.1.
  28. Bauer, P., A. Thorpe and G. Grunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47-55, doi:10.1038/nature14956.
  29. Biondi, R., T. Neubert, S. Syndergaard, and J. K. Nielsen, 2011: Radio occultation bending angle anomalies during tropical cyclones, Atmos. Meas. Tech., 4, 1053-1060, doi:10.5194/amt-4-1053-2011. 
  30. Biondi, R., W. J. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard, 2012: Thermal structure of intense convective clouds derived from GPS radio occultations. Atmos. Chem. Phys., 12, 5309-5318, doi:10.5194/acp-12-5309-2012
  31. Biondi, R., S.-P. Ho, W. J. Randel, T. Neubert and S. Syndergaard, 2013: Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements. J. Geophys. Res., 118, 1–13, doi:10.1002/jgrd.50448.
  32. Biondi, R., A.K. Steiner, G. Kirchengast, and T. Rieckh, 2015: Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation. Atmos. Chem. Phys., 15 (9), 5181–5193,doi:10.5194/acp-15-5181-2015.
  33. Birner, T., 2010: Recent widening of the tropical belt from global tropopause statistics: Sensitivities, J. Geophys. Res., 115, D23109, doi:10.1029/2011JD014664.
  34. Blum, Andrew, 2019: The Weather Machine: How We See Into the Future. Vintage Publishing, London, 224 pp. ISBN10:1847923410. 
  35. Bonavita, M., 2014: On some aspects of the impact of GPSRO observations in global numerical weather prediction. Quart. J. Roy. Meteor. Soc., 140: 2546-2562. doi:10.1002/qj.2320.
  36. Bonafoni, S., R. Biondi, H. Brenot and R. Anthes, 2019: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: a review. Atmos. Research, 230, 1-18. doi:j.atmosres.2019.104624.
  37. Brahmanandam, P. S., Y. H. Chu, and J. Liu, 2010: Observations of equatorial Kelvin wave modes in the FORMOSAT-3/COSMIC GPS RO temperature profiles. Terr. Atmos. Ocean Sci., 21(5), 829-840, https://doi.org/10.3319/TAO.2010.01.06.01(A).
  38. Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75: 351-363. doi:10.1002/qj.49707532603.
  39. Brunner, L., A.K. Steiner, B. Scherllin-Pirscher, and M.W. Jury, 2016: Exploring atmospheric blocking with GPS radio occultation observations. Atmos. Chem. Phys., 16 (7), 4593–4604, doi:10.5194/acp-16-4593-2016.
  40. Brunner, L. and A.K. Steiner, 2017: A global perspective on atmospheric blocking using GPS radio occultation – one decade of observations. Atmos. Meas. Tech., 10 (12), 4727–4745, doi:10.5194/amt-10-4727-2017.
  41. Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast, Quart. J. Roy. Meteor. Soc., 135, 239–250.
  42. Cardinali, C. and Healy, S., 2014: Impact of GPS radio occultation measurements in the ECMWF system using adjoint‐based diagnostics. Quart. J. Roy. Meteor. Soc., 140: 2315-2320. doi:10.1002/qj.2300.
  43. Carter, B. A., K. Zhang, R. Norman, V. V. Kumar, and S. Kumar, 2013: On the occurrence of equatorial F-region irregularities during solar minimum using radio occultation measurements, J. Geophys. Res., 118, 892–904,doi:10.1002/jgra.50089.
  44. Chau, J. L., L. P. Goncharenko, B. G. Fejer, and H.-L. Liu, 2012: Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events. Space Sci. Rev., 168, 385-417, doi:20.1007/s11214-011-979705.
  45. Chen, S.-Y., T.-K. Wee, Y.H. Kuo and D.H. Bromwich, 2014: An Impact Assessment of GPS Radio Occultation Data on Prediction of a Rapidly Developing Cyclone over the Southern Ocean. Mon. Wea. Rev., 142, 4187-4206.   doi: 10.1175/MWR-D-14-00024.1.
  46. Chen, Y.C., M.E. Hsieh, L.F. Hsiao, Y.-H. Kuo, M.J. Yang, C.-Y. Huang and C.S. Lee, 2015: Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008-2010. Atmos. Meas. Tech. 8, 2531-2542.doi:10.5194/amt-8-2531-2015. 
  47. Chen, X.M., S.-H. Chen, J.S. Haase, B.J. Murphy, K.-N. Wang, J.L. Garrison, S.Y. Chen, C.-Y. Huang, L. Adhikari and F. Xie, 2018: The impact of radio occultation observations on the simulation of Hurricane Karl (2010). Mon. Wea. Rev., 146, 329-350, doi:10.1175/MWR-D-17-0001.1.
  48. Collard, A. and S. B. Healy, 2003: The combined impact of future space-based atmospheric sounding instruments on numerical weather prediction analysis fields: A simulation study. Quart. J. Roy. Meteor. Soc., 129: 2741–2760.
  49. Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in Weather Forecasting. Wea. Forecasting, 25, 749-767, doi:10.1175/2009WAF2222302.1.
  50. Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 14–28, doi:10.1029/2012JD017782.
  51. Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio Occultation Observations as Anchor Observations in Numerical Weather Prediction Models and Associated Reduction of Bias Corrections in Microwave and Infrared Satellite Observations. J. Atmos. Oceanic Technol., 31, 20–32, doi:10.1175/JTECH-D-13-00059.1. 
  52. Davis, N. A., and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt, J. Geophys. Res. Atmos., 118, 7773–7787, doi:10.1002/jgrd.50610.
  53. Davis, S. M., M.I. Hegglin, M. Fujiwara, R. Dragani, Y. Harada, C. Kobayashi, C. Long, G.L. Manney, E.R. Nash, G.L. Potter, S. Tegtmeier, T. Wang, K. Wargan, and J.S. Wright, 2017: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys., 17, 12743-12778, https://doi.org/10.5194/acp-17-12743-2017.
  54. Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3323–3343. doi:10.1256/qj.05.137.
  55. Dee, D. P., S.M. Uppala, A.J. Simmons, P. Berrisford, P.Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B.  Healy, H. Hersbach, E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M Matricardi, A.P. McNally B.M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828
  56. Desroziers, G., L. Berre, B. Chapnik and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc., 131, pp. 3385–3396. doi: 10.1256/qj.05.108.
  57. Eyre, J.R., 1994: Assimilation of radio occultation measurements into a numerical weather prediction system. ECMWF Tech. Memo. 199, 34 pp.
  58. Eyre, J. R., 2016: Observation bias correction schemes in data assimilation systems: a theoretical study of some of their properties. Quart. J. Roy. Meteor. Soc., 142: 2284-2291. doi:10.1002/qj.2819.
  59. Faber, A., P. Llamedo, T. Schmidt, A. de la Torre, and J. Wickert, 2013: On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos. Meas. Tech., 6 (11), 3169-3180, doi:10.5194/amt-6-3169-2013.
  60. Fetzer, E. J., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M.T. Chahine, M.T., 2006: Biases in total precipitable water vapor climatologies from atmospheric infrared sounder and advanced microwave scanning radiometer. J. Geophys. Res., 111, D09S16, doi: 10.1029/2005JD006598. 
  61. Fetzer, E. J., W.G. Read, D. Waliser, B. H. Kahn, B. Tian, H. Vömel, F. W. Irion, H. Su, A. Eldering, M. T. Juarez, J. Jiang, and V. Dang, 2008: Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder. J. Geophys. Res., 113, D22110, doi:10.1029/2008JD010000. 
  62. Flannaghan, T. J., and S. Fueglistaler, 2013: The importance of the tropical tropopause layer for equatorial Kelvin wave propagation. J. Geophys. Res. Atmos., 118, 5160-5175, doi:10.1002/jgrd.50418
  63. Foelsche, U., B. Pirscher, M. Borsche, G. Kirchengast, and J. Wickert, 2009: Assessing the climate monitoring utility of radio occultation data: From CHAMP to FORMOSAT-3/COSMIC, Terr. Atmos. Oceanic Sci., 20, 155–170, doi:10.3319/TAO.2008.01.14.01(F3C).  
  64. Gardner, L. C., R. W. Schunk, L. Scherliess, J. J. Sojka, and L. Zhu, 2014: Global Assimilation of Ionospheric Measurements-Gauss Markov model: Improved specifications with multiple data types, Space Weather, 12, 675-688, doi:10.1002/2014SW001104.
  65. Geer, A. J., Baordo, F. , Bormann, N. , Chambon, P. , English, S. J., Kazumori, M. , Lawrence, H. , Lean, P. , Lonitz, K. and Lupu, C., 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143: 3189-3206. doi:10.1002/qj.3172.
  66. Gelaro, R., W. McCarty, M.J. Suárez, R. Todling, A. Molod, L. Takacs, C.A. Randles, A. Darmenov, M.G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A.M. da Silva, W. Gu, G. Kim, R. Koster, R. Lucchesi, D. Merkova, J.E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S.D. Schubert, M. Sienkiewicz, and B. Zhao, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419–5454, doi:10.1175/JCLI-D-16-0758.1.
  67. Gilpin, S., R. Anthes and S. Sokolovskiy, 2019: Sensitivity of forward-modeled bending angles to vertical interpolation of refractivity for radio occultation data assimilation. Mon. Wea. Rev., 147, doi:10.1175/MWR-D-18-0223.1
  68. Goody, R., J. Anderson and G. North, 1998: Testing climate models:  An approach.  Bull. Amer. Met. Soc., 79, 2541-2549.
  69. Grise, K. M., and D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 2275–2292, doi:10.1175/2009JCLI3369.1.
  70. Guo, P., Y.-H. Kuo, S. V. Sokolovskiy, and D. H. Lenschow, 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 1703–1713, doi:10.1175/2011JAS3612.1. 
  71. Haase, J.S., B.J. Murphy, P. Muradyan, F. Nievinski, K.M. Larson, J.L. Garrison and K.-N. Wang, 2014: First results from an airborne GPS radio occultation system for atmospheric profiling. J. Geophy. Res. Lett., 40, 1759-1765, doi:10.1002/2013GL058681.
  72. Hajj, G. A., C. O. Ao, B. A. Iijima, D. Kuang, E. R. Kursinski, A. J. Mannucci, T. K. Meehan, L. J. Romans, M. de la Torre Juarez, and T. P. Yunck, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109, D06109, doi:10.1029/2003JD003909.  
  73. He, W., S.-P. Ho, H. Chen, X. Zhou, D. Hunt, and Y. Kuo, 2009: Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett., 36, L17807, doi:10.1029/2009GL038712.
  74. Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804.
  75. Healy, S. B. and J. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132: 605-623. doi:10.1256/qj.04.182.
  76. Healy, S. B., J.R. Eyre, M. Hamrun and J.N. Thépaut, 2007, Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators. Q. J. R. Meteorol. Soc. 133: 1213–1227.
  77. Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers, Atmos. Sci. Lett., 9, 111–118, doi:10.1002/asl.169.
  78. Healy, S. B., 2013: Surface pressure information retrieved from GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 139: 2108-2118. doi:10.1002/qj.2090.
  79. Healy, S. B., 2014: Implementation of the ROPP two-dimensional bending angle observation operator in an NWP., ECMWF, ROM SAF Report 19, 30 April 2014.
  80. Hersbach, H. and D. Dee, 2016: ECMWF reanalysis is in production. ECMWF Newsletter 147, 
  81. Hersbach, H., P. de Rosnay, B. Bell, D. Schepers, A. Simmons, C. Soci, S. Abdalla, M. Alonso Balmaseda, G. Balsamo, P. Bechtold, P. Berrisford, J. Bidlot, E. de Boisséson, M. Bonavita, P. Browne, R. Buizza, P. Dahlgren, D. Dee, R. Dragani, M. Diamantakis, J. Flemming, R. Forbes, A. Geer, T. Haiden, E. Hólm, L. Haimberger, R. Hogan, A. Horányi, M. Janisková, P. Laloyaux, P. Lopez, J. Muñoz-Sabater, C. Peubey, R. Radu, D. Richardson, J.-N. Thépaut, F. Vitart, X. Yang, E. Zsótér, and H. Zuo, 2018: Operational global reanalysis: progress, future directions and synergies with NWP. ERA Report Series No. 27, European Centre for Medium-Range Weather Forecasts. Available from https://www.ecmwf.int/en/elibrary/18765-operational-global-reanalysis-progress-future-directions-and-synergies-nwp
  82. Hernandez-Pajares, M., J. M. Juan, and J. Sanz, 2000: Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys. Res. Lett., 27, 2473-2476.
  83. Hindley, N. P., C. J. Wright, N. D. Smith, and N. J. Mitchell, 2015: The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys., 15(14), 7797-7818, 10.5194/acp-15-7797-2015.
  84. Ho, S.-P., Y. H. Kuo, Zhen Zeng, and Thomas Peterson, 2007: A Comparison of Lower Stratosphere Temperature from Microwave Measurements with CHAMP GPS RO Data, Geophy. Research Letters, 34, L15701, doi:10.1029/2007GL030202. 
  85. Ho, S.-P., M. Goldberg, Y.-H. Kuo, C.-Z Zou, W. Schreiner, 2009a: Calibration of Temperature in the Lower Stratosphere from Microwave Measurements using COSMIC Radio Occultation Data: Preliminary Results, Terr. Atmos. Oceanic Sci., 20, doi: 10.3319/TAO.2007.12.06.01(F3C).   
  86. Ho, S.-P., G. Kirchengast, S. Leroy, J. Wickert, A. J. Mannucci, A. K. Steiner, D. Hunt, W. Schreiner, S. Sokolovskiy, C. O. Ao, M. Borsche, A. von Engeln, U. Foelsche, S. Heise, B. Iijima, Y.-H. Kuo, R. Kursinski, B. Pirscher, M. Ringer, C. Rocken, and T. Schmidt, 2009b: Estimating the Uncertainty of using GPS Radio Occultation Data for Climate Monitoring: Inter-comparison of CHAMP Refractivity Climate Records 2002-2006 from Different Data Centers, J. Geophys. Res., 114, D23107, doi:10.1029/2009JD011969.
  87. Ho, S.‐P., Y.‐H. Kuo, W. Schreiner, and X. Zho, 2010a: Using SI‐traceable Global Positioning System radio occultation measurements for climate monitoring [In: State of the Climate in 2009], Bull. Am. Meteorol. Sci., 91 (7), S36–S37. 
  88. Ho, S.-P., Zhou X., Kuo Y.-H., Hunt D., Wang J.-H., 2010b: Global Evaluation of Radiosonde Water Vapor Systematic Biases using GPS Radio Occultation from COSMIC and ECMWF Analysis. Remote Sensing, 2 (5):1320-1330.  
  89. Ho, S.-P., Doug Hunt, Andrea K. Steiner, Anthony J. Mannucci, Gottfried Kirchengast, Hans Gleisner, Stefan Heise, Axel von Engeln, Christian Marquardt, Sergey Sokolovskiy, William Schreiner, Barbara Scherllin-Pirscher, Chi Ao, Jens Wickert, Stig Syndergaard, Kent B. Lauritsen, Stephen Leroy, Emil R. Kursinski, Ying-Hwa Kuo, Ulrich Foelsche, Torsten Schmidt, and Michael Gorbunov, 2012: Reproducibility of GPS Radio Occultation Data for Climate Monitoring: Profile-to-Profile Inter-comparison of CHAMP Climate Records 2002 to 2008 from Six Data Centers. J. Geophys. Research.,117, D18111, doi:10.1029/2012JD017665.  
  90. Ho, S.-P., X. Yue, Z. Zeng, C. Ao, C.-Y. Huang, E. R. Kursinski, Y.-H. Kuo, 2013: Applications of COSMIC Radio Occultation Data from the Troposphere to Ionosphere and Potential Impacts of COSMIC-2 Data. Bull. Amer. Meteor. Soc, 95 (1), ES18-ES22, doi:10.1175/BAMS-D-13-00035.1.
  91. Ho, S.-P., Liang Peng, Richard A. Anthes, Ying-Hwa Kuo, and Hsiao-Chun Lin, 2015: Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Interseasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data. J. Climate, 28, 2856–2872, doi:10.1175/JCLI-D-14-00238.1.
  92. Ho, S. -P.L. Peng, and H. Voemel, 2017: Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014. Atmospheric Chemistry and Physics, 17, 4493-4511, doi:10.5194/acp-17-4493-2017.
  93. Ho, S.-P., L. Peng, C. Mears, R. Anthes, 2018: Comparison of Global Observations and Trends of Total Precipitable Water Derived from Microwave Radiometers and COSMIC Radio Occultation from 2006 to 2013. Atmospheric Chemistry and Physics, 18, 259–274, doi:10.5194/acp-18-259-2018.
  94. Ho, S.-P., R. A. Anthes, H. Zhang, S. Chen, 2019: Improving the Impact of Radio Occultation Observations on Numerical Forecasts of Tropical Cyclones, JCSDA Quarterly Newsletter, No. 62, Winter 2019, pp11-17. doi:10.25923/w2dh-ep66.
  95. Huang, C.-Y., Kuo, Y.-H., and Chen, S.-H., 2005: Improvements on Typhoon Forecast with Assimilated GPS Occultation Refractivity. Weather Forecast., 20, 931–953.
  96. Huang, Ching-yuang, Wen-hsin Teng, S.-P. Ho, Y. H. Kuo, 2013: Global Variation of COSMIC Precipitable Water over Land: Comparisons with Ground-based GPS Measurements and NCEP Reanalyses. Geophysical Research Letters, 40 (19), 5327-5331, doi:10.1002/grl.50885.  
  97. Jin, H., Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, and A. Saito, 2011: Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth's whole atmosphere-ionosphere coupled model, J. Geophys. Res., 116, A01316, doi:10.1029/2010JA015925.
  98. Jin, H., Y. Miyoshi, D. Pancheva, P. Mukhtarov, H. Fujiwara, and H. Shinagawa, 2012: Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations. J. Geophys. Res.,117, A10323, doi: 10.1029/2012JA017650. 
  99. John, V. O. and B.J. Soden, 2007: Temperature and humidity biases in global climate models and their impacts on climate feedbacks. Geophysical Research Letters, 34, L18605, doi:10.1029/2007GL030736.
  100. Khaykin, S. M., A. Hauchecorne, N. Mzé, and P. Keckhut, 2015: Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys. Res. Lett., 42, 1251–1258, doi:10.1002/2014GL062891
  101. Kim, J. and Son, S.-W., 2012: Tropical Cold-Point Tropopause: Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC GPS Radio Occultation Measurements. J. Climate, 25, 5343–5360,doi:10.1175/JCLI-D-11-00554.1.
  102. Kim, J. E., and M. J. Alexander, 2015: Direct impacts of waves on tropical cold point tropopause temperature. Geophys. Res. Lett., 42, 1584-1592, doi:10.1002/2014GL062737
  103. Kim, J., W.J. Randel and T. Birner, 2018: Convectively driven tropopause-level cooling and its influences on stratosphere moisture. J. Geophys. Res., 123, doi:10.1002/2017JD027080.
  104. Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48, doi:10.2151/jmsj.2015-001.
  105. Kueh, M.-T., Huang, C.-Y., Chen, S.-Y., Chen, S.-H., and Wang, C.-J., 2009: Impact of GPS radio occultation soundings on prediction of Typhoon Bilis (2006) landfalling Taiwan. Terr. Atmos. Ocean Sci., 20, 115–131: http://www.ocean-sci.net/20/115/2009/.
  106. Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R.A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteorol. Soc. Jpn., 82, 507–531.
  107. Kuo, Y.-H., H. Liu, Y.-R. Guo, C.-T. Terng, and Y.-T. Lin, 2009: Impact of FORMOSAT-3/COSMIC data on typhoon and Mei-yu prediction. In Recent Progress in Atmospheric Sciences: Applications to the Asia-Pacific Region, K.-N. Liou and M.D. Chou, Eds., World Scientific, Singapore, 458–483.
  108. Kuo, Y.-H., S. Y. Chen and T. J. Galarneau Jr, 2016: Impact of GPS Radio Occultation Data on the Prediction of Tropical Cyclogenesis. Joint 30th Conference on Hydrology and the Special Sessions on US-International Partnership, 98th AMS annual meeting, 11–15 January 2016, New Orleans, LA.
  109. Kursinski, E.R., G.A. Hajj, J.T. Schofield, R.P. Linfield and K.R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 112, No. D19, 23,429-23,465.
  110. Kursinski, E. R., G. A. Hajj, S.S. Leroy, and B. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Ocean. Sci. (TAO), 11, 53–114.
  111. Kursinski, E. R., and T. Gebhardt, 2014: A method to deconvolve errors in GPS RO-derived water vapor histograms, J. Atmos. Oceanic Technol., 31(12), 2606–2628.
  112. Lackner, B. C., A.K. Steiner, G. Kirchengast, and G.C. Hegerl, 2011: Atmospheric Climate Change Detection by Radio Occultation Data Using a Fingerprinting Method. J. Climate, 24 (20), 5275–5291, doi:10.1175/2011JCLI3966.1.
  113. Ladstaedter, F., A.K. Steiner, U. Foelsche, L. Haimberger, C. Tavolato, and G. Kirchengast, 2011: An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation. Atmos. Meas. Tech., 4 (9), 1965–1977, doi:10.5194/amt-4-1965-2011.
  114. Ladstädter, F., A.K. Steiner, M. Schwärz, and G. Kirchengast, 2015: Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos. Meas. Tech., 8 (4), 1819–1834, doi: 10.5194/amt-8-1819-2015.
  115. Lee, I. T., W. Wang, J. Y. Liu, C. Y. Chen, and C. H. Lin, 2011: The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum. J. Geophys. Res., 116, A06311, doi:10.1029/2010JA015544.
  116. Lewis, H. W., 2009: A robust method for tropopause altitude identification using GPS radio occultation data. Geophys. Res. Lett., 36, L12808, doi:10.1029/2009GL039231.
  117. Lin, C. H., J. T. Lin, L. C. Chang, J. Y. Liu, C. H. Chen, W. H. Chen, H. H. Huang, and C. H. Liu, 2012a: Observation of global ionospheric responses to the 2009 stratosphere sudden warming event by FORMOSAT-3/COSMIC.  J. Geophys. Res., 117, A06323, doi:10.1029/2011JA017230.
  118. Lin, J. T., C. H. Lin, L. C. Chang, H. H. Huang, J. Y. Liu, A. B. Chen, C. H. Chen, and C. H. Liu, 2012b: Observational evidence of ionospheric migrating tide modification during the 2009 stratospheric sudden warming. Geophys. Res. Lett., 39, L02101, doi:10.1029/2011GL050248.
  119. Lin, C. H., J. T. Lin, L. C. Chang, W. H. Chen, C. H. Chen, and J. Y. Liu, 2013: Stratospheric sudden warming effects on the ionospheric migrating tides during 2008-2010 observed by FORMOSAT-3/COSMIC. J. Atmos. Sol.-Terr. Phys., 103, 66-75.
  120. Lin, C.Y., Matsuo T, Liu JY, Lin CH, Tsai HF, Araujo-Pradere EA, 2015: Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance. Atmos. Meas. Tech., 8, 171–182. doi:  10.5194/amt-8-171-2015.
  121. Liu, H., Anderson, J., and Kuo, Y.-H., 2012: Improved Analyses and Forecasts of Hurricane Ernesto’s Genesis Using Radio Occultation Data in an Ensemble Filter Assimilation System. Mon. Wea. Rev., 140, 151–166, doi:10.1175/MWR-D-11-00024.1
  122. Liu, H., Y.-H. Kuo, S. Sokolovskiy, X. Zou, Z. Zeng, L.-F. Hsiao, and B.C. Ruston, 2018: A Quality Control Procedure Based on Bending Angle Measurement Uncertainty for Radio Occultation Data Assimilation in the Tropical Lower Troposphere. J. Atmos. Oceanic Technol., 35, 2117 – 2131, doi:10.1175/JTECH-D-17-0224.1, 2117-2131. 
  123. Liu, H.L., Bardeen, C.G., Foster, B.T., et al. (13 more co-author), 2018: Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X2.0). J. Adv. Model. Earth Sys., 10 (2), 381-402, doi: 10.1002/2017MS001232 
  124. Lomidze, L., and L. Scherliess, 2015: Estimation of thermospheric zonal and meridional winds using a Kalman filter technique, Space Weather, 13, 747-760, doi:10.1002/2015SW001250.
  125. Long, C. S., M. Fujiwara, S. Davis, D.M. Mitchell, and C.J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14593-14629, doi:10.5194/acp-17-14593-2017.
  126. Luna, D., P. Alexander, and A. de la Torre, 2013: Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements. Adv. Space Res., 52 (5), 879-882, doi:10.1016/j.asr.2013.05.015.
  127. Ma, Z., Y.-H. Kuo, B. Wang, W.-S. Wu, and S. Sokolovskiy, 2009: Comparison of local and nonlocal observation operators for the assimilation of GPS RO data with the NCEP GSI system: An OSSE study. Mon. Wea. Rev., 137, 3575–3587. 
  128. Mannucci, A.J., C.O. Ao, X. Pi, and B.A. Iijima, 2011: The impact of large scale ionospheric structure on radio occultation retrievals. Atmos. Meas. Tech., 4, 2837-2850, doi:10.5194/amt-4-2837-2011. 
  129. Matsuo, T., I.-T. Lee, and J. L. Anderson, 2013: Thermospheric mass density specification using an ensemble Kalman filter. J. Geophys. Res., 118, 1339-1350 doi:10.1002/jgra.50162.
  130. Mears C., S. P. Ho, J. Wang, H. Huelsing, and L. Peng, 2017: Total Column Water Vapor, [In “States of the Climate in 2016]. Bull. Amer. Meteor. Sci., 98 (8), S24-S25, doi:10.1175/2017BAMSStateoftheClimate.1.
  131. McDonald, A. J, 2012: Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations. J. Geophys. Res., 117, D15106, doi:10.1029/2011JD016715.
  132. McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc.,132, 935–957, doi:10.1256/qj.04.171.
  133. Ming C., F., C. Ibrahim, C. Barthe, S. Jolivet, P. Keckhut, Y.A. Liou, and Y. Kuleshov, 2014: Observations and a numerical study of gravity waves during tropical cyclone Ivan (2008). Atmos. Chem. Phys., 14, 641–658, 2014 www.atmos-chem-phys.net/14/641/2014/ doi:10.5194/acp-14-641-2014.
  134. Melbourne, W. G., E. Davis, C. Duncan, G. Hajj, K. Hardy, E. Kursinski, T. Meehan, L. Young, and T. P. Yunck, T. P., 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publ. 94–18, Pasadena, CA, 147 pp. 
  135. Murphy, B.J., J.S. Haase, P. Muradyan, J.L. Garrison and K.-N. Wang, 2015: Airborne GPS radio occultation refractivity profiles observed in tropical storm environments. J. Geophys. Res. Atmos., 120, 1690-1709, doi:10.1002/2014JD022931.
  136. Nash, J., T. Oakley, H. Vömel and Li Wei, 2011: WMO intercomparison of high quality radiosonde systems, Yangjiang, China, 12 July - 3 August 2010. Instruments and Observing Methods Report no. 107. WMO/TD-No. 1580, 238pp.
  137. Nath, D., W. Chen, and A. Guharay, 2015: Climatology of stratospheric gravity waves and their interaction with zonal mean wind over the tropics using GPS RO and ground-based measurements in the two phases of QBO. Theoretical Appl. Clim., 119, 757-769, doi:10.1007/s00704-014-1146-7.
  138. Nicolls, M. J., F. S. Rodrigues, G. S. Bust, and J. L. Chau, 2009: Estimating E region density profiles from radio occultation measurements assisted by IDA4D. J. Geophys. Res., 114, A10316, doi:10.1029/2009JA014399.
  139. Neiman, P. J., F.M. Ralph, G.A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G.H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrieval. Mon. Weather Rev., 136, 4398–4420, 2008. 
  140. Noël, S., M. Buchwitz, and J. P. Burrows, 2004: First retrieval of global water vapour column amounts from SCIAMACHY measurements. Atmos. Chem. Phys., 4, 111– 125. 
  141. Ohring, G. (Ed.), 2007: Achieving Satellite Instrument Calibration for Climate Change (ASIC3) Workshop report, 144 pp., NOAA, Camp Springs, Md. Available at:  http://www.star.nesdis.noaa.gov/star/documents/ASIC3-071218-webversfinal.pdf.   
  142. Oyama, K.-I., J. T. Jhou, J. T. Lin, C. Lin, H. Liu, and K. Yumoto, 2014: Ionospheric response to 2009 sudden stratospheric warming in the Northern Hemisphere. J. Geophys. Res., 119, 10,260-10,275, doi:10.1002/2014JA020014.
  143. Pan, C. J., U. Das, S. S. Yang, C. J. Wong, and H. C. Lai, 2011: Investigation of Kelvin waves in the stratosphere using FORMOSAT-3/COSMIC temperature data. J. Meteor. Soc. Japan, 89A, 83-96, doi:10.2151/jmsj.2011-A05.
  144. Pedatella, N. M., H.-L. Liu, F. Sassi, J. Lei, J. L. Chau, and X. Zhang, 2014: Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability. J. Geophys. Res., 119, 3828-3843,doi:10.1002/2014JA019849.
  145. Pedatella, N. M., and A. Maute, 2015: Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings. J. Geophys. Res., 120, 10,740-10,753, doi:10.1002/2015JA021986.
  146. Pedatella, N. M., X. Yue, and W. S. Schreiner, 2015: An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles. J. Geophys. Res., 120, 8942-8953, doi:10.1002/2015JA021704. 
  147. Pirscher, B., U. Foelsche, M. Borsche, G. Kirchengast, and Y.‐H. Kuo (2010), Analysis of migrating diurnal tides detected in FORMOSAT‐3/COSMIC temperature data. J. Geophys. Res., 115, D14108, doi:10.1029/2009JD013008.
  148. Poli, P., P. Moll, D. Puech, F. Rabier, and S. B. Healy, 2009: Quality control, error analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. Terr. Atmos. Ocean. Sci., 20, 101-113, doi: 10.3319/TAO.2008.01.21.02(F3C).
  149. Poli, P., S.B. Healy, and D.P. Dee, 2010:  Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis.  Quart. J. Roy. Meteor. Soc., 136: 1972-1990, doi: 10.102/qj.172.
  150. Randel, W. J., F. Wu, and W. Rivera Rios, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024, doi:10.1029/2002JD002595.  
  151. Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, D03102, doi:10.1029/2004JD005006. 
  152. Randel, W. J., D. J. Seidel, and L. L. Pan, 2007a: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, doi:10.1029/2006JD007904.  
  153. Randel, W.J., F. Wu and P. Forster, 2007b: The extratropical tropopause inversion layer: global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64, 4489-4496.  
  154. Randel, W.J., and F. Wu, 2010: The polar summer tropopause inversion layer. J. Atmos. Sci., 67, 2572-2581.
  155. Randel, W. J., and F. Wu, 2015: Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J. Atmos. Sci., 72, 1261-1275,doi:10.1175/JAS-D-14-0216.1.
  156. Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136: 116-131. doi:10.1002/qj.521
  157. Rieckh, T., B. Scherllin-Pirscher, F. Ladstädter and U. Foelsche, 2014: Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos. Meas. Tech., 7 (11), 3947–3958, doi:10.5194/amt-7-3947-2014.
  158. Rieckh, T.R. A. AnthesW. RandelS. -P. Ho, and U. Foelsche, 2017: Tropospheric dry layers in the tropical western Pacific: Comparisons of GPS radio occultation with multiple data sets. Atmos. Meas. Tech., 10, 1093-1110, doi:10.5194/amt-10-1093-2017.
  159. Rieckh, T.R. A. AnthesW. RandelS. -P. Ho, and U. Foelsche, 2018: Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series. Atmos. Meas. Tech., 11, 3091-3109, doi:10.5194/amt-11-3091-2018 
  160. Santer, B. D., R. Sausen, T. M. L. Wigley, J. S. Boyle, K. AchutaRao, C. Doutriaux, J. E. Hansen, G. A. Meehl, E. Roeckner, R. Ruedy, G. Schmidt, and K. E. Taylor, 2003: Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations:Decadal changes. J. Geophys. Res.,108 (D1), 4002, doi:10.1029/2002JD002258,2003
  161. Scherllin-Pirscher, B., C. Deser, S.-P. Ho, C. Chou, W. Randel and Y.H.  Kuo, 2012: The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett., 39(20), L20801, doi:10.1029/2012GL053071.
  162. Scherllin-Pirscher, B., S. Syndergaard, U. Foelsche, and K. B. Lauritsen, 2015: Generation of a bending angle radio occultation climatology (BAROCLIM) and its use in radio occultation retrievals, Atmos. Meas. Tech., 8(1), 109–124, doi:10.5194/amt-8-109-2015.
  163. Scherllin-Pirscher, B., W. J. Randel, and J. Kim, 2017: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements. Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017. 
  164. Schlüssel, P. and W.J. Emery, 1990: Atmospheric water vapour over oceans from SSM/I measurements. Int. J. Remote Sens., 11, 753-766.
  165. Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SAC-C: Global monitoring of thermal tropopause parameters. Atmos. Chem. Phys., 5, 1473–1488. 
  166. Schmidt, T., G. Beyerle, S. Heise, J. Wickert and M. Rothacher, 2006: A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C.
  167. Geophys. Res. Lett., 33, L04808, doi:10.1029/2005GL024600. 
  168. Schmidt, T., J. Wickert, G. Beyerle, and S. Heise, 2008: Global tropopause height trends estimated from GPS radio occultation data. Geophys. Res. Lett, 35, L11806, doi:10.1029/2008GL034012. 
  169. Schmidt, T., J., P. Cammas, H. G. J. Smit, S. Heise, J. Wickert, and A. Haser, 2010: Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data. J. Geophys. Res., 115, D24304, doi:10.1029/2010JD014284.
  170. Schmidt, T., P. Alexander, and A. de la Torre, 2016: Stratospheric gravity wave momentum flux from radio occultation. J. Geophys. Res. Atmos., 121, 4443-4467, doi:10.1002/2015JD024135.
  171. Schreiner, W.S., 2019: COSMIC and RO missions of opportunity. JCSDA Quarterly, No. 62, 1-6, doi:10.25923/w2dh-ep66
  172. Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, and D. C. Hunt, 1999: Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4), 949-966, doi:10.1029/1999RS900034.
  173. Schreiner,   W. S. Sokolovskiy,  D. Hunt,  C. Rocken and Y.-H. Kuo, 2011: Analysis of GPS radio occultation data  from the   FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC.  Atmos. Meas. Tech., 4, 2255-2272. doi:10.5194/amt-4-2255-2011. 
  174. Schröder, M., M. Lockhoff, L. Shi, L., T. August, R. Bennartz, E. Borbas,  H. Brogniez, X. Calbet, S. Crewell, S. Eikenberg, F. Fell, J. Forsythe, A. Gambacorta, K. Graw, K., S.-P. Ho, H. Höschen, J. Kinzel, E. R. Kursinski, A. Reale, J. Roman, N. Scott, S. Steinke, B. Sun, T. Trent, A. Walther, U. Willen, Q. Yang, 2017: GEWEX water vapor assessment (G-VAP). WCRP Report 16/2017; World Climate Research Programme (WCRP): Geneva, Switzerland; 216 pp. 
  175. Schunk, R. W., et al., 2016: Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS). Radio Sci., 51, 1157-1165, doi:10.1002/2015RS005888.
  176. Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 21–24, doi:10.1038/ngeo.2007.38. 
  177. Seidel, D. J., Gillett, N. P., Lanzante, J. R., Shine, K. P., and Thorne, P. W. 2011: Stratospheric temperature trends: Our evolving understanding. Wiley Interdisciplinary Reviews, 2, 592–616. 
  178. Seif, A., J.-Y. Liu, A. J. Mannucci, B. A. Carter, R. Norman, R. G. Caton, and R. T. Tsunoda, 2017: A Study of Daytime L-Band Scintillation in Association With Sporadic EAlong the Magnetic Dip Equator, Radio Sci., 70(4), 360–368, doi:10.1002/2017RS006393.
  179. Sheng, C., Y. Deng, X. Yue, and Y. Huang, 2014: Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations. J. Atmos. Sol.-Terr. Phys., 115, 79-86, doi:10.1016/j.jastp.2013.12.0.3 
  180. Shepherd, M. G., and T. Tsuda, 2008: Large-scale planetary disturbances in stratospheric temperature at high-latitudes in the southern summer hemisphere. Atmos. Chem. Phys., 8, 7557-7570, doi:10.5194/acp-8-7557-2008.
  181. Simmons, A. J., P. Poli, D.P. Dee, P. Berrisford, H. Hersbach, S. Kobayashi and C. Peubey, 2014: Estimating low‐frequency variability and trends in atmospheric temperature using ERA‐Interim. Quart. J. Roy. Meteor. Soc., 140: 329-353. doi:10.1002/qj.2317.
  182. Sokolovskiy, S., 2003: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci., 38, 1058. doi:10.1029/2002RS002728.
  183. Sokolovskiy, S., Y. H. Kuo, and W. Wang, 2005: Assessing the accuracy of linearized observation operator for assimilation of the Abel-retrieved refractivity: Case simulation with high-resolution weather model. Mon. Wea. Rev., 133, 2200-2212, doi: 10.1175/MWR2948.1.
  184. Sokolovskiy, S., Y.-H. Kuo, C. Rocken, W.S. Schreiner, D. Hunt, D., and R.A. Anthes, 2006: Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett., 33, L12813, doi:10.1029/2006GL025955.
  185. Sokolovskiy, S., Lenschow, D., Rocken, C., Schreiner, W., Hunt, D., Kuo, Y.-H., and Anthes, R., 2010: Variability of the boundary layer depth over certain regions of subtropical ocean from 3 years of COSMIC data, Presentation at the 90th AMS Annual Meeting, Atlanta, GA, USA, 17–21 January 2010.
  186. Sokolovskiy, S., C. Rocken, W. Schreinner and D. Hunt, 2010: On the ncertainty of radio occultation inversions in the lower troposphere. J. Geophy. Res, 115, D22111, doi:10.1029/2010JD014058.
  187. Sokolovskiy, S., W. Schreiner, Z. Zeng, D. Hunt, Y.-C. Lin, and Y.-H. Kuo, 2014: Observation, analysis, and modeling of deep radio occultation signals: Effects of tropospheric ducts and interfering signals, Radio Sci., 49, doi:10.1002/2014RS005436.
  188. Steiner, A. K., and G. Kirchengast, 2005: Error analysis for GNSS radio occultation data based on ensembles of profiles from end-to-end simulations, J. Geophys. Res. Atmos., 110(D), D15307, doi:10.1029/2004JD005251.
  189.       Steiner, A. K., G. Kirchengast, M. Borsche, U. Foelsche and T. Schoengassner, 2007. A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J. Geophys. Res, 112 (D22), D22110, doi:10.1029/2006JD008283.
  190. Steiner, A. K., B.C. Lackner, F. Ladstädter, B. Scherllin-Pirscher, U. Foelsche, and G. Kirchengast, 2011: GPS radio occultation for climate monitoring and change detection. Radio Sci, 46, RS0D24, doi:10.1029/2010RS004614.
  191. Steiner, A. K., D. Hunt, S.-P. Ho, G. Kirchengast, A.J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engelen, T Schmidt, C. Ao, S.S. Leroy, E.R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K.B. Kauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Synergaard, and J. Wickert, 2013: Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos. Chem. Phys., 13 (3), 1469–1484, doi:10.5194/acp-13-1469-2013.
  192. Steiner, A. K., B.C. Lackner, and M.A. Ringer, 2018: Tropical convection regimes in climate models: evaluation with satellite observations. Atmos. Chem. Phys., 18 (7), 4657–4672, doi:10.5194/acp-18-4657-2018.
  193. Sun, B., Reale, A., Seidel, D. J., and Hunt, D. C. 2010: Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, doi:10.1029/2010JD014457. 
  194. Sun, B., Reale, A., Schroeder, S., Seidel, D. J., and Ballish, B. 2013: Toward improved corrections for radiation-induced biases in radiosonde temperature observations. J. Geophys. Res., 118, 4231– 4243, doi:10.1002/jgrd.50369. 
  195. Syndergaard, S., 2000: On the ionosphere calibration in GPS radio occultation measurements. Radio Science, 35, 865-883,doi:10.1029/1999RS002199
  196.          Teng, W.-H., C. Y. Huang, S.-P. Ho, Y. H. Kuo, and X. J. Zhou, 2013: Characteristics of Global Precipitable Water in ENSO Events Revealed by COSMIC Measurements. J. Geophy. Research, 118, 1–15, doi:10.1002/jgrd.50371.  
  197. Thayer, J. P., J. F. Vickrey, R. A. Heelis, and J. B. Gary, 1995: Interpretation and modeling of the high-latitude electromagnetic energy flux, J. Geophys. Res., 100(A10), 19715-19728, doi:10.1029/95JA01159.
  198. Thorne, P. W., P. Brohan, H.A. Titchner, M.P. McCarthy, S.C. Sherwood, T.C. Peterson, L. Haimberger, D.E. Parker, S.F.B. Tett, B.D. Santer, D.R. Fereday, and J.J. Kennedy,  2011: A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes, J. Geophys. Res., 116, D12116, doi:10.1029/2010JD015487
  199. Tian, B., C. O. Ao, D. E. Waliser, E. J. Fetzer, A. J. Mannucci, J. Teixeira, 2012: Intraseasonal temperature variability in the upper troposphere and lower stratosphere from the GPS radio occultation measurements. J. Geophys. Res. Atmos., 117 (D15), doi:10.1029/2012JD017715.
  200. Tsuda, T., 2014: Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation. Proc. Japan Academy, Series B, 90(1), 12-27,doi:10.2183/pjab.90.12.
  201. Tulasi Ram, S., J. Lei, S.-Y. Su, C. H. Liu, C. H. Lin, and W. S. Chen, 2010a: Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008, Geophys. Res. Lett., 37, L02101, doi:10.1029/2009GL041038.
  202. Tulasi Ram, S., C. H. Liu, and S.‐Y. Su, 2010b: Periodic solar wind forcing due to recurrent coronal holes during 1996–2009 and its impact on Earth’s geomagnetic and ionospheric properties during the extreme solar minimum, J. Geophys. Res., 115, A12340, doi:10.1029/2010JA015800.
  203. Tulasi Ram, S., S.-Y. Su, L.-C. Tsai and C. H. Liu, 2016: A self-contained GIM-aided Abel retrieval to improve GNSS-Radio Occultation retrieved electron density profiles, GPS Solutions, 20 (4), 825-836.
  204. Vergados, P., A. J. Mannucci, and H. Su, 2013: A validation study for GPS radio occultation data with moist thermodynamic structure of tropical cyclones. J. Geophys. Res. Atmos., 118, 9401-9413,doi:10.1002/jgrd.50698
  205. Vergados, P., Z. J. Luo, K. Emanuel, and A. J. Mannucci, 2014: Observational tests of hurricane intensity estimations using GPS radio occultations, J. Geophys. Res. Atmos., 119, 1936–1948, doi:10.1002/2013JD020934.
  206. Virts, K. S., and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 1143–1157, doi:10.1175/JAS-D-13-0178.1.
  207. von Engeln, A., S. Healy, C. Marquardt, Y. Andres, and F. Sancho, 2009: Validation of operational GRAS radio occultation data. Geophys. Res. Lett., 36, L17809, doi: 10.1029/2009GL039968.
  208. Wang, L., and M. J. Alexander, 2010: Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res., 115 (D21), doi:10.1029/2010JD013860.
  209. Ware, R., M. Exner, D. Feng, M. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth, 1996: GPS sounding of the atmosphere from low Earth orbit:  Preliminary results. Bull. Amer. Met.  Soc., 77, 19-40.
  210. Wee, T.-K. and Kuo, Y.-H., 2014: A perspective on the fundamental quality of GPS radio occultation data. Atmos. Meas. Tech. Discuss., 7, 9481-9508, doi:10.5194/amtd-7-9481-2014.
  211. Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather  ocean algorithm. J. Atmos. Sci., 56, 1613–1627.
  212. Wentz, F. J., 2015: A 17-Year climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) microwave imager, J. Clim., doi:10.1175/JCLI-D-15-0155.1. 
  213. Wilhelmsen, H., F. Ladstädter, B. Scherllin-Pirscher, and A.K. Steiner, 2018. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements. Atmos. Meas. Tech., 11(3), 1333–1346, doi:10.5194/amt-11-1333-2018. 
  214. Wu, D. L., 2017: New global electron density observations from GPS-RO in the D- and E-region ionosphere, J. Atmos. Sol.-Terr. Phys., 171, 36-59, doi:10.1016/j.jastp.2017.07.013. 
  215. Xie, F., S. Syndergaard, E. R. Kursinski, and B. Herman, 2006: An approach for retrieving marine boundary layer refractivity from GPS occultation data in the presence of superrefraction. J. Atmos. Oceanic Technol., 23, 1629–1644, doi:10.1175/JTECH1996.1. 
  216. Xie, F., D. L. Wu, C. O. Ao and A.J. Mannucci, 2010: Atmospheric diurnal variations observed with GPS radio occulation soundings. Atmos. Chem. Phys., 10, 6889–6899, doi:10.5194/acp-10-6889-2010.
  217. Xie, F.,D.L. Wu, C.O. Ao, A.J. Mannucci and S. Syndergaard, 2010. Super-refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys. Res. Lett., 37, L11805, doi:10.1029/2010GL043299.
  218. Xie, F., D. L. Wu, C. O. Ao, A. J. Mannucci, and E. R. Kursinski, 2012: Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys., 12, 903–918, doi:10.5194/acp-12-903-2012. 
  219. Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen, 2014: Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX- IOP8. Mon. Wea. Rev., 142, 4139-4163.
  220. Yue, X., W. S. Schreiner, J. Lei, C. Rocken, D. C. Hunt, Y.-H. Kuo, and W. Wan, 2010a: Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event, J. Geophys. Res., 115, A00G09, doi:10.1029/2010JA015466.
  221. Yue, X., W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, and Y.-H. Kuo, 2010b: Error analysis of Abel retrieved electron density profiles from radio occultation measurements, Ann. Geophys., 28, 217-222, doi:10.5194/angeo-28-217-2010.
  222. Yue, X., W. S. Schreiner, Y.-C. Lin, C. Rocken, Y.-H. Kuo, and B. Zhao, 2011: Data assimilation retrieval of electron density profiles from radio occultation measurements, J. Geophys. Res., 116, A03317, doi:10.1029/2010JA015980.
  223. Yue, X., W.S. Schreiner, Y.-H. Kuo, D.C. Hunt, W. Wang, S.C. Solomon. A.G. Burns, D. Bilitza, J.-Y. Liu, W. Wan and J. Wickert, 2012: Global 3-D ionospheric electron density reanalysis based on multisource data assimilation, J. Geophys. Res., 117, A09325, doi:10.1029/2012JA017968.
  224. Yue, X., W. S. Schreiner, and Y.-H. Kuo, 2013: Evaluating the effect of the global ionospheric map on aiding retrieval of radio occultation electron density profiles. GPS Solutions, 17 (3), 327-335, doi:10.1007/s10291-012-0281-9.
  225. Yue, X., W. S. Schreiner, N. Pedatella, R. A. Anthes, A. J. Mannucci, P. R. Straus, and J.-Y. Liu, 2014: Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather, 12, 616-621, doi:10.1002/2014SW001133.
  226. Yue, X., W. S. Schreiner, N. M. Pedatella, and Y.-H. Kuo, 2016: Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Weather, 14, 285-299, doi:10.1002/2015SW001340.
  227. Yunck, T. P., C.-H. Liu, and R. Ware, 2000: A history of GPS sounding, Terr. Atmos. Ocean. Sci., 11, 1–20, 2000. 
  228. Zeng, Z., W. Randel, S. Sokolovskiy, C. Deser, Y.-H. Kuo, M. Hagan, J. Du, and W. Ward, 2008: Detection of migrating diurnal tide in the tropical upper troposphere and lower stratosphere using the Challenging Minisatellite Payload radio occultation data. J. Geophys. Res., 113, D03102, doi:10.1029/2007JD008725.
  229. Zeng, Z. and S. Sokolovskiy, 2010: Effect of sporadic E clouds on GPS radio occultation signals. Geophy. Res. Lett., 37, L18817, doi:10.1029/2010g1044561.
  230. Zeng, Z., S.-P. Ho, S. Sokolovskiy, and Y.-H. Kuo, 2012: Structural evolution of the Madden-Julian Oscillation from COSMIC radio occultation data. J. Geophys. Res., 117, D22108, doi:10.1029/2012JD017685.
  231. Zeng, Z., S. Sokolovskiy, W.S. Schreiner, and D. Hunt, 2019: Representation of vertical structures by radio occultation observations in the upper troposphere and lower stratosphere: Comparison to high-resolution radiosonde profiles. J. Atmos. and Oceanic Tech., April 2019,doi:10.1175/JTECH-D-18-0105.1 
  232. Zhang, H., S.-P. Ho, S. Sokolovskiy and Y.-H. Kuo, 2019: Impact of dynamic error specification on the assimilation of GPS RO bending angles for global numerical weather prediction. Atmospheric Chemistry and Physics (unpublished manuscript, to be submitted).
  233. Zou, X., L. Lin, and F. Weng, 2014: Absolute Calibration of ATMS Upper Level Temperature Sounding Channels Using GPS RO Observations. IEEE Trans. Geo. Remote Sens., 52 (2), 1397-1406, doi:10.1109/TGRS.2013.2250981.